Exploring the Limits of the Geometric Copolymerization Model

The geometric copolymerization model is a recently introduced statistical Markov chain model. Here, we investigate its practicality. First, several approaches to identify the optimal model parameters from observed copolymer fingerprints are evaluated using Monte Carlo simulated data. Directly optimizing the parameters is robust against noise but has impractically long running times. A compromise between robustness and running time is found by exploiting the relationship between monomer concentrations calculated by ordinary differential equations and the geometric model. Second, we investigate the applicability of the model to copolymerizations beyond living polymerization and show that the model is useful for copolymerizations involving termination and depropagation reactions.

[1]  F. Mayo,et al.  Copolymerization. I. A Basis for Comparing the Behavior of Monomers in Copolymerization; The Copolymerization of Styrene and Methyl Methacrylate , 1944 .

[2]  P. F. Onyon Polymer Handbook , 1972, Nature.

[3]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[4]  J. I. Brauman Polymers , 1991, Science.

[5]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[6]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[7]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[8]  David E. Goldberg,et al.  Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement , 1999 .

[9]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[10]  M. Montaudo Mass spectra of copolymers. , 2002, Mass spectrometry reviews.

[11]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[12]  R. Krüger MALDI‐TOF Mass Spectrometry of Synthetic Polymers , 2004 .

[13]  Humberto González Díaz,et al.  Stochastic molecular descriptors for polymers. 1. Modelling the properties of icosahedral viruses with 3D-Markovian negentropies , 2004 .

[14]  Vincenzo Cutello,et al.  The Clonal Selection Principle for In Silico and In Vitro Computing , 2005 .

[15]  New insights into free-radical (co)polymerization kinetics , 2005 .

[16]  Marco Drache,et al.  Modeling RAFT polymerization kinetics via Monte Carlo methods: cumyl dithiobenzoate mediated methyl acrylate polymerization , 2005 .

[17]  Rafael Molina,et al.  Stochastic molecular descriptors for polymers. 2. Spherical truncation of electrostatic interactions , 2005 .

[18]  Humberto González-Díaz,et al.  Stochastic molecular descriptors for polymers. 3. Markov electrostatic moments as polymer 2D-folding descriptors: RNA–QSAR for mycobacterial promoters , 2005 .

[19]  Fabiano Luis de Sousa,et al.  Generalized External Optimization: A New Meta-Heuristic Inspired by a Model of Natural Evolution , 2005 .

[20]  H. Tobita Molecular Weight Distribution of Living Radical Polymers: 1. Fundamental Distribution , 2006 .

[21]  Jason Brownlee OAT : the Optimization Algorithm Toolkit , 2007 .

[22]  M. Drache Modeling the Product Composition During Controlled Radical Polymerizations with Mono- and Bifunctional Alkoxyamines , 2009 .

[23]  R. Szymanski On the determination of the ratios of the propagation rate constants on the basis of the MWD of copolymer chains: A new Monte Carlo algorithm , 2009 .

[24]  P. Schoenmakers,et al.  Strip-based regression: a method to obtain comprehensive co-polymer architectures from matrix-assisted laser desorption ionisation-mass spectrometry data. , 2010, Journal of chromatography. A.

[25]  S. Weidner,et al.  Copolymer Composition Determined by LC‐MALDI‐TOF MS Coupling and “MassChrom2D” Data Analysis , 2012 .

[26]  Marco Drache,et al.  Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach , 2012 .

[27]  Yu Wang,et al.  Linear Gradient Quality of ATRP Copolymers , 2012 .

[28]  Guy Marin,et al.  Improved kinetic Monte Carlo simulation of chemical composition-chain length distributions in polymerization processes , 2014 .

[29]  J. Horský,et al.  Fingerprint Multiplicity in MALDI‐TOF Mass Spectrometry of Copolymers , 2014 .

[30]  Piet D. Iedema,et al.  Deterministic Modeling of Copolymer Microstructure: Composition Drift and Sequence Patterns , 2015 .

[31]  Martin S. Engler,et al.  COCONUT—An Efficient Tool for Estimating Copolymer Compositions from Mass Spectra. , 2015, Analytical chemistry.

[32]  Simon Harrisson,et al.  The limits of precision monomer placement in chain growth polymerization , 2016, Nature Communications.

[33]  Martin S. Engler,et al.  Abundance correction for mass discrimination effects in polymer mass spectra. , 2016, Rapid communications in mass spectrometry : RCM.

[34]  Martin S. Engler,et al.  New Statistical Models for Copolymerization , 2016, Polymers.

[35]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .