A Design of Neural Signal Sensing LSI with Multi-Input-Channels

SUMMARY A neural-signal sensing system with multi-input-channels was designed utilizing a new chopper amplifier with direct connected to a multiplexer. The proposed system consists of multiplexers, chopper amplifiers, a multi-mode analog-to-digital converter (ADC), and a wireless transmitter. It enables to measure 50-channel signals at the same time, which are selected out of 100 channels to detect useful information. The test chip including 10-channel-inputs chopper-amplifier and multi-mode ADC, that was designed and fabricated with a mixed signal 0.35-µm CMOS technology. Utilizing the proposed direct chopper input scheme and the shared chopper amplifier, the circuits was designed with a small area of 9.4 mm 2 . High accuracy channel selecting and multiplexing operations were confirmed, and an equivalent input noise of 10-nV/root-Hz was obtained with test chip measurements. Power dissipation of the chopper amplifier and the ADC were 6.0-mW and 2.5-mW at a 3-V supply voltage, respectively.