An Adaptive Surface Finite Element Method Based on Volume Meshes

In this paper we define an adaptive version of a recently introduced finite element method for numerical treatment of elliptic PDEs defined on surfaces. The method makes use of a (standard) outer volume mesh to discretize an equation on a two-dimensional surface embedded in $\mathbb{R}^3$. Extension of the equation from the surface is avoided, but the number of degrees of freedom (d.o.f.) is optimal in the sense that it is comparable to methods in which the surface is meshed directly. In previous work it was proved that the method exhibits optimal order of convergence for an elliptic surface PDE if the volume mesh is uniformly refined. In this paper we extend the method and develop an a posteriori error analysis which admits adaptively refined meshes. The reliability of a residual type a posteriori error estimator is proved and both reliability and efficiency of the estimator are studied numerically in a series of experiments. A simple adaptive refinement strategy based on the error estimator is numerical...

[1]  Owe Axelsson Iterative Solution Methods: The Rate of Convergence of the Conjugate Gradient Method , 1994 .

[2]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[3]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[4]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[5]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[6]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[7]  Arnold Reusken,et al.  Parallel Multilevel Tetrahedral Grid Refinement , 2005, SIAM J. Sci. Comput..

[8]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[9]  T. Apel,et al.  Clement-type interpolation on spherical domains—interpolation error estimates and application to a posteriori error estimation , 2005 .

[10]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[11]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[12]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[13]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[14]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[15]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[16]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[17]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[18]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[19]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[20]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[21]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[22]  G. Burton Sobolev Spaces , 2013 .

[23]  Vladimir Maz'ya,et al.  On the Bourgain, Brezis, and Mironescu Theorem Concerning Limiting Embeddings of Fractional Sobolev Spaces , 2003 .