Dynamic transcription regulation at the single-molecule level.

[1]  G. Mizuguchi,et al.  Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. , 2021, Molecular cell.

[2]  Haobin Wang,et al.  Phase-Separated Transcriptional Condensates Accelerate Target-Search Process Revealed by Live-Cell Single-Molecule Imaging , 2020, Cell reports.

[3]  K. Zaret Pioneer Transcription Factors Initiating Gene Network Changes. , 2020, Annual review of genetics.

[4]  Xiaowei Zhuang,et al.  Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin , 2020, Cell.

[5]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[6]  J. Lerner,et al.  Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. , 2020, Molecular cell.

[7]  D. Taatjes,et al.  Structure and mechanism of the RNA polymerase II transcription machinery , 2020, Genes & development.

[8]  D. Larson,et al.  Transcription in Living Cells: Molecular Mechanisms of Bursting. , 2020, Annual review of biochemistry.

[9]  Wan Li,et al.  Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity , 2020, Nature Methods.

[10]  G. Mizuguchi,et al.  Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction , 2020, bioRxiv.

[11]  J. R. Chubb,et al.  What Is a Transcriptional Burst? , 2020, Trends in genetics : TIG.

[12]  K. Kamagata,et al.  How p53 Molecules Solve the Target DNA Search Problem: A Review , 2020, International journal of molecular sciences.

[13]  R. Tjian,et al.  Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences , 2019, Genes & development.

[14]  E. Mazzoni,et al.  Cell Reprogramming: The Many Roads to Success. , 2019, Annual review of cell and developmental biology.

[15]  E. Furlong,et al.  Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? , 2019, Development.

[16]  N. Hannett,et al.  Pol II phosphorylation regulates a switch between transcriptional and splicing condensates , 2019, Nature.

[17]  A. Pertsinidis,et al.  Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells , 2019, Cell.

[18]  C. Jarzynski,et al.  Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. , 2021, Nucleic acids research.

[19]  R. Tjian,et al.  Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation , 2019, eLife.

[20]  R. Tjian,et al.  MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions , 2019, bioRxiv.

[21]  D. Gilmour,et al.  The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads. , 2019, Molecular cell.

[22]  S. Urban,et al.  Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion , 2019, Science.

[23]  E. Gratton,et al.  Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis , 2019, Nature Cell Biology.

[24]  Anders S. Hansen,et al.  Guided nuclear exploration increases CTCF target search efficiency , 2018, bioRxiv.

[25]  N. Hannett,et al.  Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains , 2018, Cell.

[26]  Nicholas A. Sinnott-Armstrong,et al.  Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells , 2018, Science.

[27]  Melissa M. Harrison,et al.  Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs , 2018, Nature Communications.

[28]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[29]  R. Tjian,et al.  Imaging dynamic and selective low-complexity domain interactions that control gene transcription , 2018, Science.

[30]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[31]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[32]  Melissa M. Harrison,et al.  Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos , 2018, bioRxiv.

[33]  Yujie Sun,et al.  Intranucleus Single-Molecule Imaging in Living Cells. , 2018, Biophysical journal.

[34]  X. Darzacq,et al.  Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II , 2018, Nature.

[35]  P. Tomançak,et al.  RNA buffers the phase separation behavior of prion-like RNA binding proteins , 2018, Science.

[36]  Haobin Wang,et al.  Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation , 2018, Nature Communications.

[37]  R. Tjian,et al.  Visualizing transcription factor dynamics in living cells , 2018, The Journal of cell biology.

[38]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[39]  Maxime Woringer,et al.  Robust model-based analysis of single-particle tracking experiments with Spot-On , 2018, eLife.

[40]  J. Gebhardt,et al.  Decreasing nuclear volume concentrates DNA and enforces transcription factor-chromatin associations during Zebrafish genome activation , 2017, 1710.03539.

[41]  Sharon E. Torigoe,et al.  A dynamic interplay of enhancer elements regulates Klf4 expression in naïve pluripotency , 2017, Genes & development.

[42]  Jonathan B Grimm,et al.  Quantifying transcription factor binding dynamics at the single-molecule level in live cells. , 2017, Methods.

[43]  G. Hager,et al.  Single-molecule analysis of steroid receptor and cofactor action in living cells , 2017, Nature Communications.

[44]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[45]  Reid C. Johnson,et al.  Facilitated dissociation of transcription factors from single DNA binding sites , 2017, Proceedings of the National Academy of Sciences.

[46]  K. Kamagata,et al.  Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging , 2017 .

[47]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[48]  R. Tjian,et al.  CTCF and cohesin regulate chromatin loop stability with distinct dynamics , 2016, bioRxiv.

[49]  Patrick Rubin-Delanchy,et al.  A Bayesian cluster analysis method for single-molecule localization microscopy data , 2016, Nature Protocols.

[50]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[51]  N. Dekker,et al.  Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics , 2016, Biophysical Reviews.

[52]  Huy Nguyen Duc,et al.  Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin , 2016, eLife.

[53]  Sylvain Egloff,et al.  The pol II CTD: new twists in the tail , 2016, Nature Structural &Molecular Biology.

[54]  Brian P. Mehl,et al.  Bright photoactivatable fluorophores for single-molecule imaging , 2016, Nature Methods.

[55]  Ian M. Dobbie,et al.  Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison , 2016, Scientific Reports.

[56]  Stephen W. Michnick,et al.  Mechanisms and Consequences of Macromolecular Phase Separation , 2016, Cell.

[57]  I. Goldstein,et al.  Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions , 2016, Cell.

[58]  J. Grimm,et al.  RNA Polymerase II cluster dynamics predict mRNA output in living cells , 2016, eLife.

[59]  Valeria Levi,et al.  Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo , 2016, Cell.

[60]  R. Tjian,et al.  Dynamics of CRISPR-Cas9 genome interrogation in living cells , 2015, Science.

[61]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[62]  R. Klose,et al.  Targeting Polycomb systems to regulate gene expression: modifications to a complex story , 2015, Nature Reviews Molecular Cell Biology.

[63]  Robert Tjian,et al.  CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells , 2015, Proceedings of the National Academy of Sciences.

[64]  M. Dahan,et al.  Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher , 2015, Nature Communications.

[65]  E. Betzig,et al.  Imaging live-cell dynamics and structure at the single-molecule level. , 2015, Molecular cell.

[66]  J. J. Macklin,et al.  A general method to improve fluorophores for live-cell and single-molecule microscopy , 2014, Nature Methods.

[67]  Wesley R. Legant,et al.  3D imaging of Sox2 enhancer clusters in embryonic stem cells , 2014, eLife.

[68]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[69]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[70]  J. McNally,et al.  Single molecule analysis of transcription factor binding at transcription sites in live cells , 2014, Nature Communications.

[71]  M. Dahan,et al.  Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus , 2014, eLife.

[72]  Wesley R. Legant,et al.  Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells , 2014, Cell.

[73]  J. Elf,et al.  Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation , 2014, Nature Genetics.

[74]  William J. Godinez,et al.  Objective comparison of particle tracking methods , 2014, Nature Methods.

[75]  Rahul Roy,et al.  Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy , 2013, Proceedings of the National Academy of Sciences.

[76]  Ignacio Izeddin,et al.  Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells , 2013, Science.

[77]  X. Fang,et al.  Single-molecule fluorescence imaging in living cells. , 2013, Annual review of physical chemistry.

[78]  X. Xie,et al.  Single Molecule Imaging of Transcription Factor Binding to DNA in Live Mammalian Cells , 2013, Nature Methods.

[79]  Robert E. Kingston,et al.  Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. , 2013, Molecular cell.

[80]  J. Elf,et al.  Extracting intracellular diffusive states and transition rates from single-molecule tracking data , 2013, Nature Methods.

[81]  Alexander Y Katsov,et al.  Fast and sensitive multi-color 3D imaging using aberration-corrected multi-focus microscopy , 2012, Nature Methods.

[82]  J. Manley,et al.  The RNA polymerase II CTD coordinates transcription and RNA processing. , 2012, Genes & development.

[83]  J. McNally,et al.  A benchmark for chromatin binding measurements in live cells , 2012, Nucleic acids research.

[84]  Johan Elf,et al.  The lac Repressor Displays Facilitated Diffusion in Living Cells , 2012, Science.

[85]  Yongdeng Zhang,et al.  Rational design of true monomeric and bright photoactivatable fluorescent proteins , 2012, Nature Methods.

[86]  Burak Okumus,et al.  Segregation of molecules at cell division reveals native protein localization , 2012, Nature Methods.

[87]  Antoine M. van Oijen,et al.  Sequence-dependent sliding kinetics of p53 , 2012, Proceedings of the National Academy of Sciences.

[88]  Paul S. Russo,et al.  Phase Transitions in the Assembly of MultiValent Signaling Proteins , 2016 .

[89]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[90]  Gene-Wei Li,et al.  Central dogma at the single-molecule level in living cells , 2011, Nature.

[91]  Enrico Gratton,et al.  Lessons in fluctuation correlation spectroscopy. , 2011, Annual review of physical chemistry.

[92]  Antoine M. van Oijen,et al.  A single-molecule characterization of p53 search on DNA , 2010, Proceedings of the National Academy of Sciences.

[93]  J. Lippincott-Schwartz,et al.  Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. , 2009, Trends in cell biology.

[94]  D. Reinberg,et al.  Role of the polycomb protein EED in the propagation of repressive histone marks , 2009, Nature.

[95]  Davide Mazza,et al.  Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. , 2009, Biophysical journal.

[96]  Wendy A. Bickmore,et al.  Transcription factories: gene expression in unions? , 2009, Nature Reviews Genetics.

[97]  Juri Rappsilber,et al.  A model for transmission of the H3K27me3 epigenetic mark , 2008, Nature Cell Biology.

[98]  G. Wuite,et al.  How DNA coiling enhances target localization by proteins , 2008, Proceedings of the National Academy of Sciences.

[99]  Eric C Greene,et al.  Visualizing one-dimensional diffusion of proteins along DNA , 2008, Nature Structural &Molecular Biology.

[100]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[101]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[102]  Antoine M. van Oijen,et al.  Tumor suppressor p53 slides on DNA with low friction and high stability. , 2008, Biophysical journal.

[103]  Alfred Pingoud,et al.  Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA , 2008, Nucleic acids research.

[104]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[105]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[106]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[107]  X. Darzacq,et al.  In vivo dynamics of RNA polymerase II transcription , 2007, Nature Structural &Molecular Biology.

[108]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[109]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[110]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[111]  W. Webb,et al.  Dynamics of heat shock factor association with native gene loci in living cells , 2006, Nature.

[112]  P. Robson,et al.  Transcriptional Regulation of Nanog by OCT4 and SOX2* , 2005, Journal of Biological Chemistry.

[113]  Anton Meinhart,et al.  A structural perspective of CTD function. , 2005, Genes & development.

[114]  C. Prives,et al.  p53 linear diffusion along DNA requires its C terminus. , 2004, Molecular cell.

[115]  Haruhiko Koseki,et al.  Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. , 2004, Developmental cell.

[116]  M. Vidal,et al.  Role of histone H2A ubiquitination in Polycomb silencing , 2004, Nature.

[117]  R. Pego,et al.  Analysis of binding reactions by fluorescence recovery after photobleaching. , 2004, Biophysical journal.

[118]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[119]  D. Wiersma,et al.  Reduced protein diffusion rate by cytoskeleton in vegetative and polarized dictyostelium cells. , 2001, Biophysical journal.

[120]  Hiroshi Kimura,et al.  Kinetics of Core Histones in Living Human Cells , 2001, The Journal of cell biology.

[121]  J. McNally,et al.  The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. , 2000, Science.

[122]  P. Cook The organization of replication and transcription. , 1999, Science.

[123]  E Gratton,et al.  Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. , 1995, Biophysical journal.

[124]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[125]  P. V. von Hippel,et al.  Facilitated Target Location in Biological Systems* , 2022 .

[126]  T. Misteli,et al.  Transcription dynamics. , 2009, Molecular cell.

[127]  Gustavo Carrero,et al.  Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. , 2003, Methods.

[128]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.