Ab initio quantum chemistry on PC-based parallel supercomputers

Abstract The advent of mass-market personal computers (PC) and the associated price reduction in virtually all computer components has brought the cost of parallel, multi-processor computers down to highly affordable levels. Four-, eight-, and even 12-processor machines, constructed from basic, readily available PC components, can be obtained today for the same price as a good-quality single-processor workstation of a few years ago. Together with now well-established parallel tools (such as the message-passing interface (MPI) or parallel virtual machine (PVM) software), state-of-the-art, fully functioning, parallel machines using the Linux operating system and the latest PC microprocessors can deliver unprecedented price/performance ratios. This article reports on the capabilities and performance of a new, fully parallel ab initio program running on commercially available four- and eight-processor PC-based supercomputers.

[1]  JAMES DEMMEL,et al.  LAPACK: A portable linear algebra library for high-performance computers , 1990, Proceedings SUPERCOMPUTING '90.

[2]  Nicholas C. Handy,et al.  Analytic Second Derivatives of the Potential Energy Surface , 1993 .

[3]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[4]  Malte Von Arnim,et al.  Performance of parallel TURBOMOLE for density functional calculations , 1998, J. Comput. Chem..

[5]  P. Pulay Improved SCF convergence acceleration , 1982 .

[6]  James J. P. Stewart,et al.  Fast semiempirical calculations , 1982 .

[7]  Michael J. Frisch,et al.  Ab initio quantum chemistry on the Cray T3E massively parallel supercomputer: II , 1998, J. Comput. Chem..

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  David E. Culler,et al.  A case for NOW (networks of workstation) , 1995, PODC '95.

[10]  Christoph van Wüllen,et al.  An implementation of a Kohn—Sham density functional program using a Gaussian-type basis set. Application to the equilibrium geometry of C60 and C70 , 1994 .

[11]  Gustavo E. Scuseria,et al.  Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations , 1998 .

[12]  Stefan Brode,et al.  Parallel direct SCF and gradient program for workstation clusters , 1993, J. Comput. Chem..

[13]  Michael J. Frisch,et al.  Ab initio quantum chemistry on the Cray T3E massively parallel supercomputer: II , 1998 .

[14]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[15]  Jon Baker,et al.  Molecular energies and properties from density functional theory: Exploring basis set dependence of Kohn - Sham equation using several density functionals , 1997, J. Comput. Chem..

[16]  Jon Baker,et al.  Molecular energies and properties from density functional theory: Exploring basis set dependence of Kohn—Sham equation using several density functionals , 1997 .

[17]  Jeff Nichols,et al.  Implementation of the direct SCF and RPA methods on loosely coupled networks of workstations , 1993, J. Comput. Chem..

[18]  Richard J. Hall,et al.  Combined Hartree-Fock and density functional theory: a distributed memory parallel implementation , 1994 .

[19]  R. Harrison,et al.  AB Initio Molecular Electronic Structure on Parallel Computers , 1994 .

[20]  Jürgen Gauss,et al.  An unconventional scf method for calculations on large molecules , 1986 .

[21]  Ron Shepard,et al.  Elimination of the diagonalization bottleneck in parallel Direct-SCF methods , 1993 .

[22]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[23]  Thomas R. Furlani,et al.  Implementation of a parallel direct SCF algorithm on distributed memory computers , 1995, J. Comput. Chem..