The Lattice of Definability: Origins, Recent Developments, and Further Directions

The paper presents recent results and open problems on classes of definable relations (definability spaces, reducts, relational algebras) as well as sources for the research starting from the XIX century. Finiteness conditions are investigated, including quantifier alternation depth and number of arguments width. The infinite lattice of definability for integers with a successor function (a non ω-categorical structure) is described. Methods of investigation include study of automorphism groups of elementary extensions of structures under consideration, using Svenonius theorem and a generalization of it.

[1]  Edward V. Huntington Inter-relations among the four principal types of order , 1935 .

[2]  A. Tarski Einige methodologifche Unterfuchungen über die Definierbarkeit der Begriffe , 1935 .

[3]  E. V. Huntington,et al.  A complete set of postulates for the theory of absolute continuous magnitude , 1902 .

[4]  Charles S. Peirce,et al.  Description of a Notation for the Logic of Relatives: Resulting From an Amplification of the Conceptions of Boole's Calculus of Logic , 2015 .

[5]  E. Duporcq Compte rendu du deuxième congrès international des mathématiciens : tenu à Paris du 6 au 12 aout 1900 : procès-verbaux et communications , 1902 .

[6]  Pierre Simon,et al.  The affine and projective groups are maximal , 2013, 1310.8157.

[7]  Hisao Tanaka,et al.  Some results in the effective descriptive set theory , 1967 .

[8]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[9]  Mojżesz Presburger,et al.  On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation , 1991 .

[11]  Lars Svenonius A Theorem on Permutations in Models , 2008 .

[12]  Simon Thomas,et al.  Reducts of the random graph , 1991, Journal of Symbolic Logic.

[13]  Evert W. Beth,et al.  On Padoa’s Method in the Theory of Definition , 1953 .

[14]  George Boole,et al.  The mathematical analysis of logic , 1948 .

[15]  C. H. Langford Theorems on Deducibility , 1926 .

[16]  Alexei L. Semenov,et al.  Lattice of relational algebras definable in integers with successor , 2012, 1201.4439.

[17]  Michael Pinsker,et al.  The 42 reducts of the random ordered graph , 2013, 1309.2165.

[18]  Felix . Klein,et al.  Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .

[19]  R. Goodstein,et al.  The Basic Laws of Arithmetic , 1966, The Mathematical Gazette.

[20]  K. Danhof,et al.  Definibility in normal theories , 1973 .

[21]  James T. Smith Definitions and Nondefinability in Geometry , 2010, Am. Math. Mon..

[22]  R. Rado Universal graphs and universal functions , 1964 .

[23]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[24]  P. Winkler Random Structures and Zero-One Laws , 1993 .

[25]  Ya'acov Peterzil,et al.  Reducts of some structures over the reals , 1993, Journal of Symbolic Logic.

[26]  George Peacock Report on the recent progress and present state of certain branches of analysis , 1833 .

[27]  A. Mostowski On Direct Products of Theories , 1952 .

[28]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[29]  M. Ziegler,et al.  Invariant subgroups of vV , 1992 .

[30]  Ivan Korec,et al.  A list of arithmetical structures complete with respect to the first-order definability , 2001, Theor. Comput. Sci..

[31]  C. Peirce On the Algebra of Logic: A Contribution to the Philosophy of Notation , 1885 .

[32]  C. H. Langford Some Theorems on Deducibility , 1926 .

[33]  P. Cameron Groups St Andrews 2005: Aspects of infinite permutation groups , 2007 .

[34]  A L Semenov ON CERTAIN EXTENSIONS OF THE ARITHMETIC OF ADDITION OF NATURAL NUMBERS , 1980 .

[35]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[36]  Andrej Muchnik The definable criterion for definability in Presburger arithmetic and its applications , 2003, Theor. Comput. Sci..

[37]  Claude Frasnay,et al.  Quelques problèmes combinatoires concernant les ordres totaux et les relations monomorphes , 1965 .

[38]  Ch Sentroul Bibliothèque du Congrès international de Philosophie , 1902 .

[39]  A. Tarski,et al.  Über die Beschränktheit der Ausdrucksmittel deduktiver Theorien , 1936 .

[40]  Markus Junker,et al.  The 116 reducts of (ℚ, <, a) , 2008, Journal of Symbolic Logic.

[41]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[42]  E. Schröder On pasigraphy: its present state and the pasigraphic movement in Italy , 1898 .

[43]  Calvin C. Elgot,et al.  Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor , 1966, J. Symb. Log..

[44]  Simon Thomas,et al.  Reducts of Random Hypergraphs , 1996, Ann. Pure Appl. Log..

[45]  A. L. Semenov,et al.  Presburgerness of predicates regular in two number systems , 1977 .

[46]  Chauncey D. Leake,et al.  British Association for the Advancement of Science , 1953, Science.

[47]  A. Tarski,et al.  What are logical notions , 1986 .

[48]  The Fundamental Laws of Addition and Multiplication in Elementary Algebra , 2010 .

[49]  Michael Pinsker,et al.  Decidability of Definability , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[50]  Alexis Bès,et al.  Weakly maximal decidable structures , 2008, RAIRO Theor. Informatics Appl..

[51]  Maxime Bôcher Note on the Nine-Point Conic , 1892 .

[52]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[53]  Anand Pillay,et al.  Reducts of (C, +, *) which Contain + , 1990, J. Symb. Log..

[54]  Ya'acov Peterzil,et al.  Additive reducts of real closed fields , 1992, Journal of Symbolic Logic (JSL).

[55]  Robert E. Woodrow,et al.  Finite and Infinite Combinatorics in Sets and Logic , 1993 .

[56]  Manuel Bodirsky,et al.  REDUCTS OF STRUCTURES AND MAXIMAL-CLOSED PERMUTATION GROUPS , 2013, The Journal of Symbolic Logic.

[57]  Dugald Macpherson,et al.  A survey of homogeneous structures , 2011, Discret. Math..