On configurational forces in multiplicative elastoplasticity

Abstract The main goal of this work consists in the elaboration of the material or rather configurational mechanics in the context of multiplicative elastoplasticity. This nowadays well-established approach, which is inherently related to the concept of a material isomorphism or in other words to a local rearrangement, is adopted as a paradigm for the general modelling of finite inelasticity. The overall motion in space is throughout assumed to be compatible and sufficiently smooth. According to the underlying configurations, namely the material and the spatial configuration as well as what we call the intermediate configuration, different representations of balance of linear momentum are set up for the static case. The underlying flux terms are thereby identified as stress tensors of Piola and Cauchy type and are assumed to derive from a free energy density function, thus taking hyperelastic formats. Moreover, the incorporated source terms, namely the configurational volume forces, are identified by comparison arguments. These quantities include gradients of distortions as well as dislocation density tensors. In particular those dislocation density tensors related to the elastic or plastic distortion do not vanish due to the general incompatibility of the intermediate configuration. As a result, configurational volume forces which are settled in the intermediate configuration embody non-vanishing dislocation density tensors while their material counterparts directly incorporate non-vanishing gradients of distortions. This fundamental property enables us to recover the celebrated Peach–Koehler force for finite inelasticity, acting on a single dislocation, from the intermediate configuration volume forces.

[1]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[2]  Morton E. Gurtin,et al.  Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector , 2005 .

[3]  David Yang Gao,et al.  Advances in mechanics and mathematics , 2002 .

[4]  Marcelo Epstein,et al.  The Eshelby tensor and the theory of continuous distributions of inhomogeneities , 2002 .

[5]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[6]  M. Gurtin,et al.  Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations , 2002 .

[7]  J. Mandel Thermodynamics and Plasticity , 1973 .

[8]  A. Menzel,et al.  Material forces in computational single-slip crystal-plasticity , 2005 .

[9]  Georgios E. Stavroulakis,et al.  Nonsmooth/Nonconvex Mechanics: Modeling, Analysis and Numerical Methods , 2001 .

[10]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  Chung-Souk Han,et al.  Mechanism-based strain gradient crystal plasticity—I. Theory , 2005 .

[12]  Paul Steinmann,et al.  On Spatial and Material Settings of Thermo-Hyperelastodynamics , 2002 .

[13]  J. Craggs Applied Mathematical Sciences , 1973 .

[14]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[15]  E. Kröner,et al.  Nicht-lineare Elastizitätstheorie der Versetzungen und Eigenspannungen , 1959 .

[16]  Physical Foundations of Dislocation Theory , 1968 .

[17]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .

[18]  A. Seeger Theorie der Gitterfehlstellen , 1955 .

[19]  Paolo Podio-Guidugli,et al.  Configurational balances via variational arguments , 2001 .

[20]  Paul Steinmann,et al.  On spatial and material settings of hyperelastostatic crystal defects , 2002 .

[21]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[22]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[23]  H. Stumpf,et al.  A MODEL OF ELASTOPLASTIC BODIES WITH CONTINUOUSLY DISTRIBUTED DISLOCATIONS , 1996 .

[24]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[25]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[26]  H. Stumpf,et al.  On the determination of the crystal reference in nonlinear continuum theory of dislocations , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[28]  G. Maugin,et al.  Eshelby's stress tensors in finite elastoplasticity , 2000 .

[29]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[30]  Walter Noll,et al.  A mathematical theory of the mechanical behavior of continuous media , 1958 .

[31]  Huajian Gao,et al.  A material force method for inelastic fracture mechanics , 2005 .

[32]  A. Menzel,et al.  On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity , 2004 .

[33]  M. Gurtin,et al.  On the characterization of geometrically necessary dislocations in finite plasticity , 2001 .

[34]  Paul Steinmann,et al.  On the continuum formulation of higher gradient plasticity for single and polycrystals , 2000 .

[35]  V. V. Bolotin,et al.  Mechanical Engineering Series , 2001 .

[36]  J. Ericksen On nonlinear elasticity theory for crystal defects , 1998 .

[37]  Eckhard Nembach,et al.  Particle Strengthening of Metals and Alloys , 1996 .

[38]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[39]  M. Epstein,et al.  On the geometrical material structure of anelasticity , 1996 .

[40]  H. Stumpf,et al.  STRAIN MEASURES, INTEGRABILITY CONDITION AND FRAME INDIFFERENCE IN THE THEORY OF ORIENTED MEDIA* , 1998 .

[41]  A. Menzel,et al.  A note on material forces in finite inelasticity , 2005 .

[42]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[43]  P. Podio-Guidugli,et al.  Configurational forces: are they needed? , 2002 .

[44]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[45]  M. Epstein,et al.  The energy-momentum tensor and material uniformity in finite elasticity , 1990 .

[46]  James H. Whitelaw,et al.  Foundations of continuum thermodynamics , 1974 .

[47]  Dietmar Gross,et al.  Configurational forces and their application in solid mechanics , 2003 .

[48]  R. Bullough,et al.  Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  Paul Steinmann,et al.  A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage , 2005 .

[50]  Bob Svendsen,et al.  On the modelling of anisotropic elastic and inelastic material behaviour at large deformation , 2001 .

[51]  R. Wiť A view of the relation between the continuum theory of lattice defects and non-euclidean geometry in the linear approximation , 1981 .

[52]  Morton E. Gurtin,et al.  A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin , 2004 .

[53]  Paul Steinmann,et al.  On the spatial formulation of anisotropic multiplicative elasto-plasticity , 2003 .

[54]  J. Ericksen,et al.  Remarks concerning forces on line defects , 1995 .

[55]  Mechanics of Generalized Continua , 1968 .

[56]  Walter Noll A New Mathematical Theory of Simple Materials , 1972 .

[57]  Paul Steinmann,et al.  Views on multiplicative elastoplasticity and the continuum theory of dislocations , 1996 .

[58]  S. Govindjee,et al.  Computational methods for inverse finite elastostatics , 1996 .

[59]  Gérard A. Maugin,et al.  Pseudo-plasticity and Pseudo-inhomogeneity Effects in Materials Mechanics , 2003 .

[60]  M. Epstein,et al.  GEOMETRICAL MATERIAL STRUCTURE OF ELASTOPLASTICITY , 1998 .

[61]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[62]  R. Ogden Non-Smooth Changes in Elastic Material Properties under Finite Deformation , 2001 .