Thermodynamics and Statistical Mechanics

The field of thermodynamics is easiest to understand in the context of Newtonian mechanics. Newtonian mechanics describes the effect of forces on objects. Thermodynamics describes the effect of heat transfer on objects. When heat is transferred,the temperature of an object changes.Temperature and heat are also intimately related to energy. A hot gas in a piston has a high pressure and it can do mechanical work by applying a force to a piston. By Newtonian mechanics the work is directly related to a transfer of energy. The laws of Newtonian mechanics are simplest to describe using the abstract concept of a point object with mass but no internal structure. The analogous abstraction for thermodynamic laws are materials that are in equilibrium and (even better) are homogeneous. It turns out that even the description of the equilibrium properties of materials is so rich and varied that this is still a primary focus of active research today. Statistical mechanics begins as an effort to explain the laws of thermodynamics by considering the microscopic application of Newton’s laws. Microscopically, the temperature of a gas is found to be related to the kinetic motion of the gas molecules. Heat transfer is the transfer of Newtonian energy from one object to another. The statistical treatment of the many particles of a material, with a key set of assumptions, reveals that thermodynamic laws are a natural consequence of many microscopic particles interacting with each other. Our studies of complex systems will lead us to discuss the properties of systems composed of many interacting parts. The concepts and tools of statistical mechanics will play an important role in these studies, as will the laws of thermodynamics that emerge from them. Thermodynamics also begins to teach us how to think about systems interacting with each other.

[1]  J. Stapleton Introduction to Probability Theory and Statistical Inference , 1970 .

[2]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[3]  Sherwood Anderson,et al.  A new testament , 1927 .

[4]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.