Combining Deduction and Algebraic Constraints for Hybrid System Analysis

We show how theorem proving and methods for handling real algebraic constraints can be combined for hybrid system verification. In particular, we highlight the interaction of deductive and algebraic reasoning that is used for handling the joint discrete and continuous behaviour of hybrid systems. We illustrate proof tasks that occur when verifying scenarios with cooperative traffic agents. From the experience with these examples, we analyse proof strategies for dealing with the practical challenges for integrated algebraic and deductive verification of hybrid systems, and we propose an iterative background closure strategy.

[1]  B. I. Silva,et al.  Modeling and Verifying Hybrid Dynamic Systems Using CheckMate , 2001 .

[2]  Erika Ábrahám,et al.  Verification of hybrid systems: formalization and proof rules in PVS , 2001, Proceedings Seventh IEEE International Conference on Engineering of Complex Computer Systems.

[3]  Martin Giese,et al.  Incremental Closure of Free Variable Tableaux , 2001, IJCAR.

[4]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[5]  Andrew Adams,et al.  Computer Algebra Meets Automated Theorem Proving: Integrating Maple and PVS , 2001, TPHOLs.

[6]  Thomas A. Henzinger,et al.  Automatic symbolic verification of embedded systems , 1993, 1993 Proceedings Real-Time Systems Symposium.

[7]  Edmund M. Clarke,et al.  The Image Computation Problem in Hybrid Systems Model Checking , 2007, HSCC.

[8]  André Platzer,et al.  Differential Dynamic Logic for Verifying Parametric Hybrid Systems , 2007, TABLEAUX.

[9]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[10]  Cesare Tinelli,et al.  Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing , 2003, Journal of Automated Reasoning.

[11]  André Platzer,et al.  A Temporal Dynamic Logic for Verifying Hybrid System Invariants , 2007, LFCS.

[12]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[13]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[14]  Stephan Merz,et al.  Model Checking , 2000 .

[15]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[16]  Bernhard Beckert,et al.  Dynamic Logic with Non-rigid Functions , 2006, IJCAR.

[17]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[18]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[19]  Kaisa Sere,et al.  Hybrid action systems , 2003, Theor. Comput. Sci..

[20]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[21]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[22]  André Platzer,et al.  Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems , 2007, HyLo@FLoC.

[23]  Hardi Hungar,et al.  On the Verification of Cooperating Traffic Agents , 2003, FMCO.

[24]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[25]  Bernhard Beckert Equality and Other Theories , 1999 .

[26]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[27]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[28]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[29]  Bruno Buchberger,et al.  A survey of the Theorema project , 1997, ISSAC.

[30]  Henny B. Sipma,et al.  Deductive Verification of Hybrid Systems Using STeP , 1998, HSCC.