A 0.7 V Single-Supply SRAM With 0.495 $\mu$m$^{2}$ Cell in 65 nm Technology Utilizing Self-Write-Back Sense Amplifier and Cascaded Bit Line Scheme

We proposed a novel SRAM architecture with a high-density cell in low-supply-voltage operation. A self-write-back sense amplifier realizes cell failure rate improvement by more than two orders of magnitude at 0.6 V. A cascaded bit line scheme saves additional process cost for hierarchical bit line layer. A test chip with 256 kb SRAM utilizing 0.495 mum2 cell in 65 nm CMOS technology demonstrated 0.7 V single-supply operation.

[1]  T. Sasaki,et al.  A 0.7V single-supply SRAM with 0.495um2 cell in 65nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme , 2008, 2008 IEEE Symposium on VLSI Circuits.

[2]  N. Vallepalli,et al.  A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.

[3]  M. Immediato,et al.  A pico-joule class, 1 GHz, 32 KByte/spl times/64 b DSP SRAM with self reverse bias , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[4]  H. Pilo,et al.  An SRAM Design in 65-nm Technology Node Featuring Read and Write-Assist Circuits to Expand Operating Voltage , 2007, IEEE Journal of Solid-State Circuits.

[5]  M. Khellah,et al.  A 256-Kb Dual-${V}_{\rm CC}$ SRAM Building Block in 65-nm CMOS Process With Actively Clamped Sleep Transistor , 2007, IEEE Journal of Solid-State Circuits.

[6]  Leland Chang,et al.  A 5.3GHz 8T-SRAM with Operation Down to 0.41V in 65nm CMOS , 2007, 2007 IEEE Symposium on VLSI Circuits.

[7]  O. Takahashi,et al.  Implementation of the Cell Broadband Engine™ in 65 nm SOI Technology Featuring Dual Power Supply SRAM Arrays Supporting 6 GHz at 1.3 V , 2008, IEEE Journal of Solid-State Circuits.

[8]  Kevin Zhang,et al.  A 1.1GHz 12μA/Mb-Leakage SRAM Design in 65nm Ultra-Low-Power CMOS with Integrated Leakage Reduction for Mobile Applications , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  H. Yamauchi,et al.  A Stable SRAM Cell Design Against Simultaneously R/W Disturbed Accesses , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[10]  D. Plass,et al.  A 5.6GHz 64kB Dual-Read Data Cache for the POWER6TM Processor , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[11]  Atsushi Kawasumi,et al.  A Single-Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit-ß-ratio Memory Cell , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[12]  Nii Koji,et al.  A 65 nm Ultra-High-Density Dual-port SRAM with 0.71um2 8T-cell for SoC , 2006 .

[13]  C. Radens,et al.  A Sub-600-mV, Fluctuation Tolerant 65-nm CMOS SRAM Array With Dynamic Cell Biasing , 2008, IEEE Journal of Solid-State Circuits.

[14]  K. Ishibashi,et al.  0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.