Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates

ABSTRACT Carbapenems are important agents for the therapy of infections due to multidrug-resistant Pseudomonas aeruginosa; the development of carbapenem resistance hampers effective therapeutic options. To assess the mechanisms leading to resistance, 33 clinical isolates with differing degrees of carbapenem susceptibility were analyzed for the expression of the chromosomal β-lactamase (ampC), the porin that is important for the entry of carbapenems (oprD), and the proteins involved in four efflux systems (mexA, mexC, mexE, and mexX). Real-time reverse transcriptase PCR was performed using primers and fluorescent probes for each of the target genes. The sequencing of regulatory genes (ampR, mexR, nalC, nalD, mexT, and mexZ) was also performed. Diminished expression of oprD was present in all imipenem- and meropenem-resistant isolates but was not required for ertapenem resistance. Increased expression of ampC was not observed in several isolates that were overtly resistant to carbapenems. Increased expression of several efflux systems was observed in many of the carbapenem-resistant isolates. Increased efflux activity correlated with high-level ertapenem resistance and reduced susceptibility to meropenem and aztreonam. Most isolates with increased expression of mexA had mutations affecting nalC and/or nalD. Two isolates with mutations leading to a premature stop codon in mexZ had markedly elevated mexX expressions, although mutations in mexZ were not a prerequisite for overexpression. β-Lactam resistance in clinical isolates of P. aeruginosa is a result of the interplay between diminished production of oprD, increased activity of ampC, and several efflux systems.

[1]  M. Maciá,et al.  Molecular Mechanisms of β-Lactam Resistance Mediated by AmpC Hyperproduction in Pseudomonas aeruginosa Clinical Strains , 2005, Antimicrobial Agents and Chemotherapy.

[2]  K. Poole,et al.  Induction of the MexXY Efflux Pump in Pseudomonas aeruginosa Is Dependent on Drug-Ribosome Interaction , 2005, Journal of bacteriology.

[3]  K. Poole,et al.  Mutations in PA3574 (nalD) Lead to Increased MexAB-OprM Expression and Multidrug Resistance in Laboratory and Clinical Isolates of Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[4]  D. Livermore,et al.  Selectivity of ertapenem for Pseudomonas aeruginosa mutants cross-resistant to other carbapenems. , 2005, The Journal of antimicrobial chemotherapy.

[5]  K. Poole,et al.  Mutations in PA2491 (mexS) Promote MexT-Dependent mexEF-oprN Expression and Multidrug Resistance in a Clinical Strain of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[6]  E. Shimizu,et al.  Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. , 2005, FEMS microbiology letters.

[7]  P. Nordmann,et al.  A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. , 2005, The Journal of antimicrobial chemotherapy.

[8]  R. Goering,et al.  Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. , 2004, Diagnostic microbiology and infectious disease.

[9]  K. Poole,et al.  MexAB‐OprM hyperexpression in NalC‐type multidrug‐resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720‐PA3719 , 2004, Molecular microbiology.

[10]  F. Budak,et al.  Effect of carbapenems on the transcriptional expression of the oprD, oprM and oprN genes in Pseudomonas aeruginosa. , 2004, Journal of medical microbiology.

[11]  D. Hocquet,et al.  Clinical Strains of Pseudomonas aeruginosa Overproducing MexAB-OprM and MexXY Efflux Pumps Simultaneously , 2004, Antimicrobial Agents and Chemotherapy.

[12]  T. Nakae,et al.  A Quorum‐Sensing Autoinducer Enhances the mexAB‐oprM Efflux‐Pump Expression without the MexR‐Mediated Regulation in Pseudomonas aeruginosa , 2004, Microbiology and immunology.

[13]  C. Bailly,et al.  Role of the Multidrug Efflux System MexXY in the Emergence of Moderate Resistance to Aminoglycosides among Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 2004, Antimicrobial Agents and Chemotherapy.

[14]  T. Nakae,et al.  Enhancement of the mexAB-oprM Efflux Pump Expression by a Quorum-Sensing Autoinducer and Its Cancellation by a Regulator, MexT, of the mexEF-oprN Efflux Pump Operon in Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[15]  L. Rice,et al.  Extended-Spectrum β-Lactamases in Klebsiella pneumoniae Bloodstream Isolates from Seven Countries: Dominance and Widespread Prevalence of SHV- and CTX-M-Type β-Lactamases , 2003, Antimicrobial Agents and Chemotherapy.

[16]  T. Nakae,et al.  Mutations Affecting DNA-Binding Activity of the MexR Repressor of mexR-mexA-mexB-oprM Operon Expression , 2003, Journal of bacteriology.

[17]  K. Poole,et al.  Contribution of the MexXY Multidrug Transporter to Aminoglycoside Resistance in Pseudomonas aeruginosa Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[18]  D. Landman,et al.  Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  T. Köhler,et al.  Genetic and Phenotypic Variations of a Resistant Pseudomonas aeruginosa Epidemic Clone , 2003, Antimicrobial Agents and Chemotherapy.

[20]  U. Ozbek,et al.  Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. , 2003, Journal of medical microbiology.

[21]  A. Vanderkelen,et al.  Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. , 2002, Environmental microbiology.

[22]  M. Hentzer,et al.  Constitutive High Expression of Chromosomal β-Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS1669) Located in ampD , 2002, Antimicrobial Agents and Chemotherapy.

[23]  K. Poole,et al.  The MexR Repressor of the mexAB-oprM Multidrug Efflux Operon in Pseudomonas aeruginosa: Characterization of Mutations Compromising Activity , 2002, Journal of bacteriology.

[24]  D. Landman,et al.  Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. , 2002, Archives of internal medicine.

[25]  P. Nordmann,et al.  Emerging carbapenemases in Gram-negative aerobes. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[26]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[27]  D. Livermore Of Pseudomonas, porins, pumps and carbapenems. , 2001, The Journal of antimicrobial chemotherapy.

[28]  K. Poole,et al.  MexR Repressor of the mexAB-oprMMultidrug Efflux Operon of Pseudomonas aeruginosa: Identification of MexR Binding Sites in the mexA-mexRIntergenic Region , 2001, Journal of bacteriology.

[29]  N. Gotoh,et al.  Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[30]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[31]  T. Nakae,et al.  Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[32]  N. Masuda,et al.  Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[33]  K. Poole,et al.  Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2000, Journal of bacteriology.

[34]  H. Yoneyama,et al.  Assignment of the Substrate-Selective Subunits of the MexEF-OprN Multidrug Efflux Pump of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[35]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[36]  H. Nikaido,et al.  Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.

[37]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[38]  H. Yoneyama,et al.  nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. , 1999, FEMS microbiology letters.

[39]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[40]  K. Poole,et al.  The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. , 1999, FEMS microbiology letters.

[41]  M. Gründling,et al.  A large outbreak of multiresistant Pseudomonas aeruginosa strains in north-eastern Germany. , 1999, The Journal of antimicrobial chemotherapy.

[42]  T. Köhler,et al.  In Vivo Emergence of Multidrug-Resistant Mutants ofPseudomonas aeruginosa Overexpressing the Active Efflux System MexA-MexB-OprM , 1999, Antimicrobial Agents and Chemotherapy.

[43]  T. Köhler,et al.  Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.

[44]  T. Tsuchiya,et al.  Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[45]  H. Yoneyama,et al.  The Role ofmex-Gene Products in Antibiotic Extrusion inPseudomonas aeruginosa , 1997 .

[46]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[47]  H. Yoneyama,et al.  The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. , 1997, Biochemical and biophysical research communications.

[48]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[49]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[50]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance , 1994, Antimicrobial Agents and Chemotherapy.

[51]  D. Livermore Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[52]  S. Busby,et al.  Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. , 1990, The Biochemical journal.

[53]  J. Waitz Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically , 1990 .

[54]  R. Hancock,et al.  Roles of Porin and β-Lactamase in β-Lactam Resistance of Pseudomonas aeruginosa , 1988 .

[55]  E. Bruck,et al.  National Committee for Clinical Laboratory Standards. , 1980, Pediatrics.