Multivariate Skew t-Distribution: Asymptotics for Parameter Estimators and Extension to Skew t-Copula

Symmetric elliptical distributions have been intensively used in data modeling and robustness studies. The area of applications was considerably widened after transforming elliptical distributions into the skew elliptical ones that preserve several good properties of the corresponding symmetric distributions and increase possibilities of data modeling. We consider three-parameter p-variate skew t-distribution where p-vector μ is the location parameter, Σ : p× p is the positive definite scale parameter, p-vector α is the skewness or shape parameter, and the number of degrees of freedom ν is fixed. Special attention is paid to the two-parameter distribution when μ = 0 that is useful for construction of the skew t-copula. Expressions of the parameters are presented through the moments and parameter estimates are found by the method of moments. Asymptotic normality is established for the estimators of Σ and α. Convergence to the asymptotic distributions is examined in simulation experiments.

[1]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[2]  A. Kshirsagar,et al.  Some Extensions of the Multivariate t-Distribution and the Multivariate Generalization of the Distribution of the Regression Coefficient , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Anna Clara Monti,et al.  Inferential Aspects of the Skew Exponential Power Distribution , 2004 .

[4]  Arjun K. Gupta Multivariate skew t-distribution , 2003 .

[5]  Rogelio Ramos-Quiroga,et al.  Coastal Flooding and the Multivariate Skew-t Distribution , 2004 .

[6]  Victor H. Lachos,et al.  Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution , 2020, J. Multivar. Anal..

[7]  Harry Joe,et al.  Tail densities of skew-elliptical distributions , 2019, J. Multivar. Anal..

[8]  Martin Eling,et al.  Skewed distributions in finance and actuarial science: a review , 2015 .

[9]  E. Käärik,et al.  On Parametrization of Multivariate Skew-Normal Distribution , 2015 .

[10]  E. Seneta,et al.  Tail dependence for two skew t distributions , 2010 .

[11]  The Use of Copulas to Model Conditional Expectation for Multivariate Data , 2011 .

[12]  T. Ghizzoni,et al.  Multivariate skew-t approach to the design of accumulation risk scenarios for the flooding hazard , 2010 .

[13]  C. Anderson‐Cook,et al.  An Introduction to Multivariate Statistical Analysis (3rd ed.) (Book) , 2004 .

[14]  Xuming He,et al.  Three-step estimation in linear mixed models with skew-t distributions , 2008 .

[15]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[16]  Geoffrey J. McLachlan,et al.  Finite mixtures of multivariate skew t-distributions: some recent and new results , 2014, Stat. Comput..

[17]  Tõnu Kollo,et al.  Parameter Estimation and Application of the Multivariate Skew t-Copula , 2010 .

[18]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[19]  W. N. Street,et al.  Financial Data and the Skewed Generalized T Distribution , 1998 .

[20]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[21]  Ananda Sen,et al.  Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005, Technometrics.

[22]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .

[23]  M. C. Jones On Families of Distributions with Shape Parameters , 2015 .

[24]  Simone A. Padoan,et al.  Multivariate extreme models based on underlying skew-t and skew-normal distributions , 2011, J. Multivar. Anal..

[25]  E. Luciano,et al.  Copula methods in finance , 2004 .

[26]  Brunero Liseo,et al.  Objective Bayesian analysis for the multivariate skew-t model , 2017, Stat. Methods Appl..

[27]  Adelchi Azzalini,et al.  The Skew-Normal and Related Families , 2018 .

[28]  T. Kollo,et al.  Asymptotic normality of estimators for parameters of a multivariate skew-normal distribution , 2018 .

[29]  Marc G. Genton,et al.  Multivariate unified skew-elliptical distributions , 2010 .

[30]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[31]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[32]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[33]  T. Kollo,et al.  Tail dependence of skew t-copulas , 2017, Commun. Stat. Simul. Comput..

[34]  P. Embrechts Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005 .

[35]  M. Steel,et al.  Multivariate Student -t Regression Models : Pitfalls and Inference , 1999 .

[36]  Yulia V. Marchenko Multivariate Skew-t Distributions in Econometrics and Environmetrics , 2012 .