A metapopulation model for malaria with transmission-blocking partial immunity in hosts

[1]  T. Prentice World Health Report , 2013 .

[2]  S. Sirima,et al.  A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host , 2009, Journal of biological dynamics.

[3]  Durrell D. Kapan,et al.  Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics , 2009, PloS one.

[4]  Zhien Ma,et al.  Modeling and dynamics of infectious diseases , 2009 .

[5]  Denise L. Doolan,et al.  Acquired Immunity to Malaria , 2009, Clinical Microbiology Reviews.

[6]  P. Auger,et al.  The Ross-Macdonald model in a patchy environment. , 2008, Mathematical biosciences.

[7]  V. Robert,et al.  Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites , 2007, Malaria Journal.

[8]  C. Chiyaka,et al.  Transmission model of endemic human malaria in a partially immune population , 2007, Math. Comput. Model..

[9]  J A P Heesterbeek,et al.  The type-reproduction number T in models for infectious disease control. , 2007, Mathematical biosciences.

[10]  A. Githeko,et al.  Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control , 2006, Malaria Journal.

[11]  J. Hyman,et al.  Bifurcation Analysis of a Mathematical Model for Malaria Transmission , 2006, SIAM J. Appl. Math..

[12]  C. Drakeley,et al.  Transmission‐reducing immunity is inversely related to age in Plasmodium falciparum gametocyte carriers , 2006, Parasite immunology.

[13]  Antoine Flahault,et al.  The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission , 2005, Malaria Journal.

[14]  Qin Cheng,et al.  Modeling the Development of Acquired Clinical Immunity to Plasmodium falciparum Malaria , 2004, Infection and Immunity.

[15]  David L Smith,et al.  The Risk of a Mosquito-Borne Infectionin a Heterogeneous Environment , 2004, PLoS biology.

[16]  E. Riley,et al.  The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology , 2003, Clinical and experimental immunology.

[17]  M. G. Roberts,et al.  A new method for estimating the effort required to control an infectious disease , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  J. Duchemin,et al.  Metapopulation concepts applied to falciparum malaria and their impacts on the emergence and spread of chloroquine resistance. , 2003, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[19]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[20]  A. Taylor-Robinson,et al.  A model of development of acquired immunity to malaria in humans living under endemic conditions. , 2002, Medical hypotheses.

[21]  D. Rodríguez,et al.  Models of infectious diseases in spatially heterogeneous environments , 2001, Bulletin of mathematical biology.

[22]  C. Lengeler,et al.  Child mortality and malaria transmission intensity in Africa. , 2001, Trends in parasitology.

[23]  G. A. Ngwa,et al.  A mathematical model for endemic malaria with variable human and mosquito populations , 2000 .

[24]  H M Yang,et al.  Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). , 2000, Revista de saude publica.

[25]  Carlos Castillo-Chavez,et al.  Backwards bifurcations and catastrophe in simple models of fatal diseases , 1998, Journal of mathematical biology.

[26]  D. Kaslow Transmission-blocking immunity against malaria and other vector-borne diseases. , 1993, Current opinion in immunology.

[27]  E. Kalipeni,et al.  Determinants of infant mortality in Malawi: a spatial perspective. , 1993, Social science & medicine.

[28]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[29]  Joan L. Aron,et al.  Mathematical modelling of immunity to malaria , 1988 .

[30]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[31]  C. S. Holling,et al.  Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest , 1978 .

[32]  P. F. Russell,et al.  Flight Range of Anopheles in the Philippines. Second Experiment with Stained Mosquitoes. , 1934 .

[33]  Julien Arino,et al.  Diseases in metapopulations , 2009 .

[34]  Julien Arino,et al.  Global Results for an Epidemic Model with Vaccination that Exhibits Backward Bifurcation , 2003, SIAM J. Appl. Math..

[35]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[36]  Joan L. Aron,et al.  Mathematical modeling of immunity to malaria , 1989 .

[37]  K Dietz,et al.  A malaria model tested in the African savannah. , 1974, Bulletin of the World Health Organization.

[38]  C. M. Urbino,et al.  Flight range of gravid and newly emerged Anopheles. , 1951, Bulletin of the World Health Organization.