Parameterizing turbulent exchange over sea ice: the ice station weddell results

A 4-month deployment on Ice Station Weddell (ISW) in the western Weddell Sea yielded over 2000 h of nearly continuous surface-level meteorological data, including eddy-covariance measurements of the turbulent surface fluxes of momentum, and sensible and latent heat. Those data lead to a new parameterization for the roughness length for wind speed, z0, for snow-covered sea ice that combines three regimes: an aerodynamically smooth regime, a high-wind saltation regime, and an intermediate regime between these two extremes where the macroscale or `permanent' roughness of the snow and ice determines z0. Roughness lengths for temperature, zT, computed from this data set corroborate the theoretical model that Andreas published in 1987. Roughness lengths for humidity,zQ, do not support this model as conclusively but are all, on average, within an order of magnitude of its predictions. Only rarely arezTand zQ equal to z0. These parameterizations have implications for models that treat the atmosphere-ice-ocean system.

[1]  E. L. Andreas,et al.  Simulations of Snow, Ice, and Near-Surface Atmospheric Processes on Ice Station Weddell , 2004 .

[2]  J. Kaimal,et al.  Another look at sonic thermometry , 1991 .

[3]  U. Radok Deposition and erosion of snow by the wind , 1968 .

[4]  A. C. Chamberlain Roughness length of sea, sand, and snow , 1983 .

[5]  R. Bintanja,et al.  A simple parameterization for snowdrift sublimation over Antarctic snow surfaces , 2001 .

[6]  S. Larsen,et al.  Wind stress measurements during the Tower Ocean Wave and Radar Dependence Experiment , 1988 .

[7]  T. Foken,et al.  Tools for quality assessment of surface-based flux measurements , 1996 .

[8]  S. Zilitinkevich On the computation of the basic parameters of the interaction between the atmosphere and the ocean , 1969 .

[9]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[10]  D. S. Munro,et al.  Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation , 1989, Journal of Glaciology.

[11]  M. Broeke,et al.  Momentum and scalar transfer coefficients over aerodynamically smooth antarctic surfaces , 1995 .

[12]  E. K. Webb,et al.  Correction of flux measurements for density effects due to heat and water vapour transfer , 1980 .

[13]  J. King,et al.  Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf , 1994 .

[14]  John W. Pomeroy,et al.  Saltation of snow , 1990 .

[15]  B. Hicks,et al.  Atmospheric turbulent fluxes over snow , 1972 .

[16]  E. L. Andreas,et al.  Accounting for clouds in sea ice models , 1999 .

[17]  J. Finnigan,et al.  Atmospheric Boundary Layer Flows: Their Structure and Measurement , 1994 .

[18]  Torsten Neubert,et al.  Seasonal variations of high‐latitude field‐aligned currents inferred from Ørsted and Magsat observations , 2002 .

[19]  J. Kaimal,et al.  Minimizing flow distortion errors in a sonic anemometer , 1990 .

[20]  W. McGillis,et al.  Parameterization and Micrometeorological Measurement of Air–Sea Gas Transfer , 2000, Boundary-Layer Meteorology.

[21]  A. D. Sarma,et al.  Statistics of Surface-Layer Turbulence Over Terrain with Metre-Scale Heterogeneity , 1998 .

[22]  J. Lumley,et al.  Turbulent Transport of Momentum and Heat , 1972 .

[23]  A. Holtslag,et al.  Applied Modeling of the Nighttime Surface Energy Balance over Land , 1988 .

[24]  J. Overland Atmospheric boundary layer structure and drag coefficients over sea ice , 1985 .

[25]  E. L. Andreas Air‐ice drag coefficients in the western Weddell Sea: 2. A model based on form drag and drifting snow , 1995 .

[26]  Jeff Dozier,et al.  Effect of Viewing Angle on the Infrared Brightness Temperature of Snow , 1982 .

[27]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[28]  R. Bintanja A New Power-Law Relation For The Vertical Distribution of Suspended Matter , 2002 .

[29]  Yadvinder Malhi,et al.  A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation , 2003 .

[30]  T. Meyers,et al.  Measuring Biosphere‐Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods , 1988 .

[31]  W. A. Oost,et al.  Air‐sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results , 1996 .

[32]  M. Raupach,et al.  Saltation layers, vegetation canopies and roughness lengths , 1991 .

[33]  S. Larsen,et al.  Measurement of temperature spectra by a sonic anemometer , 1993 .

[34]  Arnold L. Gordon,et al.  Weddell Sea exploration from ice station , 1993 .

[35]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[36]  Edgar L. Andreas,et al.  Heat budget of snow-covered sea ice at North Pole 4 , 1999 .

[37]  P. R. Owen,et al.  Saltation of uniform grains in air , 1964, Journal of Fluid Mechanics.

[38]  A. Buck Lyman-alpha radiation source with high spectral purity. , 1977, Applied optics.

[39]  Sylvain M. Joffre,et al.  Momentum and heat transfers in the surface layer over a frozen sea , 1982 .

[40]  A. V. Smol’yakov,et al.  Statistical Description of Turbulence , 1983 .

[41]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[42]  B. Hicks,et al.  Momentum, heat and water vapour transfer to and from natural and artificial surfaces , 1973 .

[43]  E. F. Bradley,et al.  Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean , 1991 .

[44]  Edgar L. Andreas,et al.  A New Formulation for the Bowen Ratio over Saturated Surfaces , 1996 .

[45]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[46]  P. Guest,et al.  Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget , 2002 .

[47]  Stuart D. Smith Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature , 1988 .

[48]  R. McMillen,et al.  An eddy correlation technique with extended applicability to non-simple terrain , 1988 .

[49]  H. Charnock Wind stress on a water surface , 1955 .

[50]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[51]  Kenneth L. Davidson,et al.  The aerodynamic roughness of different types of sea ice , 1991 .

[52]  Frans T. M. Nieuwstadt,et al.  Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes , 1983 .

[53]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .

[54]  A. Buck The Variable-Path Lyman-Alpha Hygrometer and Its Operating Characteristics. , 1976 .

[55]  T. Vihma,et al.  Derivation of turbulent surface fluxes — An iterative flux-profile method allowing arbitrary observing heights , 1990 .

[56]  E. L. Andreas,et al.  Low-Level Atmospheric Jets And Inversions Over The Western Weddell Sea , 2000, Boundary-Layer Meteorology.

[57]  Edgar L. Andreas,et al.  Using Wavelets to Detect Trends , 1997 .

[58]  Carl A. Friehe,et al.  Flux Corrections Revisited , 2002 .

[59]  E. L. Andreas,et al.  Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements , 1995 .

[60]  S. D. Smith,et al.  Eddy correlation measurements of evaporation and sensible heat flux over Arctic Sea ice , 1973 .