Finite element analysis for grinding of wire-sawn silicon wafers: a designed experiment

Abstract Silicon is the primary semiconductor material used to fabricate microchips. The quality of microchips depends directly on the quality of starting silicon wafers. A series of processes are required to manufacture high quality silicon wafers. Surface grinding is one of the processes used to flatten the wire-sawn wafers. A major issue in grinding of wire-sawn wafers is the reduction and elimination of wire-sawing induced waviness. This paper presents the results of a finite element analysis for grinding of wire-sawn silicon wafers. In this investigation, a four-factor two-level full factorial design is employed to reveal the main effects as well as the interaction effects of four factors (wafer thickness, waviness wavelength, waviness height and grinding force) on effectiveness of waviness reduction. The implications of this study to manufacturing are also discussed.