A two-level method for mimetic finite difference discretizations of elliptic problems

We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underlying partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented.

[1]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[2]  L. B. D. Veiga,et al.  A Mimetic discretization method for linear elasticity , 2010 .

[3]  Panayot S. Vassilevski,et al.  On some versions of the element agglomeration AMGe method , 2007, Numer. Linear Algebra Appl..

[4]  Paola F. Antonietti,et al.  Mimetic finite differences for nonlinear and control problems , 2014 .

[5]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[6]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[7]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[8]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[9]  Jinchao Xu,et al.  New Estimates for the Rate of Convergence of the Method of Subspace Corrections , 2008 .

[10]  Ludmil T. Zikatanov,et al.  Two‐sided bounds on the convergence rate of two‐level methods , 2008, Numer. Linear Algebra Appl..

[11]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[12]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[13]  Paola F. Antonietti,et al.  Mimetic finite difference approximation of quasilinear elliptic problems , 2015 .

[14]  Ludmil T. Zikatanov,et al.  Combined Preconditioning with Applications in Reservoir Simulation , 2012, Multiscale Model. Simul..

[15]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[16]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[17]  Lourenço Beirão da Veiga,et al.  Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[18]  Panayot S. Vassilevski,et al.  Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties , 2012, Numer. Linear Algebra Appl..

[19]  Paola F. Antonietti,et al.  Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[20]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[21]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[22]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[23]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[24]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[25]  Paola F. Antonietti,et al.  An Adaptive MFD Method for the Obstacle Problem , 2013 .

[26]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[27]  Gianmarco Manzini,et al.  Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..

[28]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[29]  Johannes K. Kraus,et al.  Algebraic Multigrid Based on Computational Molecules, 2: Linear Elasticity Problems , 2007, SIAM J. Sci. Comput..

[30]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[31]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[32]  Mikhail Shashkov,et al.  Approximation of boundary conditions for mimetic finite-difference methods , 1998 .

[33]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[34]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[35]  Ludmil T. Zikatanov,et al.  Polynomial of Best Uniform Approximation to 1/x and Smoothing in Two-level Methods , 2010, Comput. Methods Appl. Math..

[36]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[37]  Wolfgang Hackbusch,et al.  Multigrid Methods II , 1986 .

[38]  Paola F. Antonietti,et al.  Mimetic Discretizations of Elliptic Control Problems , 2013, J. Sci. Comput..

[39]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[40]  J. David Moulton,et al.  A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..

[41]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[42]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[43]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[44]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..

[45]  S. V. Nepomnyaschikh,et al.  Decomposition and Fictitious Domains Methods for Elliptic Boundary Value Problems , 2017 .

[46]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[47]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[48]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.

[49]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[50]  Annalisa Buffa,et al.  Innovative mimetic discretizations for electromagnetic problems , 2010, J. Comput. Appl. Math..

[51]  Panayot S. Vassilevski,et al.  Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..

[52]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[53]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .