A (Simplified) Supreme Being Necessarily Exists, says the Computer: Computationally Explored Variants of G\"odel's Ontological Argument
暂无分享,去创建一个
[1] Christoph Benzmüller,et al. Universal (meta-)logical reasoning: Recent successes , 2019, Sci. Comput. Program..
[2] Sobel on Gödel’s Ontological Proof , 2006 .
[3] A. Hazen,et al. On Gödel's ontological proof , 1998 .
[4] E. Zalta,et al. How to say goodbye to the third man , 2000 .
[5] Lawrence C. Paulson,et al. Extending Sledgehammer with SMT Solvers , 2011, Journal of Automated Reasoning.
[6] Geoff Sutcliffe,et al. Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure , 2010, J. Formaliz. Reason..
[7] Christoph Benzmüller,et al. Computer-supported Exploration of a Categorical Axiomatization of Modeloids , 2020, RAMiCS.
[8] Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.
[9] Johannes Fürnkranz,et al. KI 2017: Advances in Artificial Intelligence , 2017, Lecture Notes in Computer Science.
[10] Bruno Woltzenlogel Paleo,et al. Automating Gödel's Ontological Proof of God's Existence with Higher-order Automated Theorem Provers , 2014, ECAI.
[11] Christoph Benzmüller,et al. Computer Science and Metaphysics: A Cross-Fertilization , 2019, Open Philosophy.
[12] S. Josephson,et al. Australasian Journal of Philosophy, , 2013 .
[13] D. Sudakin,et al. Appendix A , 2007, Journal of agromedicine.
[14] Stanley Burris,et al. A course in universal algebra , 1981, Graduate texts in mathematics.
[15] Lawrence C. Paulson,et al. Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.
[16] J. Thomson. On being and saying : essays for Richard Cartwright , 1987 .
[17] Bart Van den Bossche,et al. « Nous »! , 2021 .
[18] Christoph Benzmüller,et al. Automating Emendations of the Ontological Argument in Intensional Higher-Order Modal Logic , 2017, KI.
[19] Bruno Woltzenlogel Paleo,et al. Variants of Gödel’s Ontological Proof in a Natural Deduction Calculus , 2017, Stud Logica.
[20] Christoph Benzmüller,et al. Einsatz von Theorembeweisern in der Lehre , 2016, HDI.
[21] Edward N. Zalta,et al. ON THE LOGIC OF THE ONTOLOGICAL ARGUMENT , 1991 .
[22] Bruno Woltzenlogel Paleo,et al. The Inconsistency in Gödel's Ontological Argument: A Success Story for AI in Metaphysics , 2016, IJCAI.
[23] Christoph Benzmüller,et al. Computer-supported Analysis of Positive Properties, Ultrafilters and Modal Collapse in Variants of Gödel's Ontological Argument , 2019, ArXiv.
[24] Christoph Benzmüller,et al. MECHANIZING PRINCIPIA LOGICO-METAPHYSICA IN FUNCTIONAL TYPE-THEORY , 2017, The Review of Symbolic Logic.
[25] J. Davenport. Editor , 1960 .
[26] C. Anthony Anderson,et al. Gödel's ontological proof revisited , 1996 .
[27] Christoph Benzmüller,et al. Automating Free Logic in HOL, with an Experimental Application in Category Theory , 2019, Journal of Automated Reasoning.
[28] Tobias Nipkow,et al. Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.
[29] S. Kovac. Modal collapse in Gödel's ontological proof , 2012 .
[30] C. Allen,et al. Stanford Encyclopedia of Philosophy , 2011 .
[31] A. Anderson,et al. Some Emendations of Gödel's Ontological Proof , 1990 .
[32] Jordan Howard Sobel,et al. Logic and Theism: Arguments for and against Beliefs in God , 2003 .
[33] M. Fitting. Types, Tableaus, and Gödel's God , 2002 .
[34] Piergiorgio Odifreddi. Ultrafilters, Dictators, and Gods , 2000, Finite Versus Infinite.
[35] Christoph Benzmüller,et al. Church’s Type Theory , 2006 .
[36] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[37] Branden Fitelson,et al. Steps Toward a Computational Metaphysics , 2007, J. Philos. Log..
[38] Ben Blumson. Anselm's God in Isabelle/HOL , 2017, Arch. Formal Proofs.
[39] Edward N. Zalta,et al. A Computationally-Discovered Simplification of the Ontological Argument , 2011 .
[40] Tim Lethen,et al. THE DEVELOPMENT OF GÖDEL’S ONTOLOGICAL PROOF , 2019, The Review of Symbolic Logic.
[41] Edward N. Zalta,et al. Twenty-five basic theorems in situation and world theory , 1993, J. Philos. Log..
[42] Jesse Alama,et al. Automating Leibniz's Theory of Concepts , 2015, CADE.
[43] Richard Spencer-Smith,et al. Modal Logic , 2007 .