A (Simplified) Supreme Being Necessarily Exists, says the Computer: Computationally Explored Variants of G\"odel's Ontological Argument

An approach to universal (meta-)logical reasoning in classical higher-order logic is employed to explore and study simplifications of Kurt Gödel’s modal ontological argument. Some argument premises are modified, others are dropped, modal collapse is avoided and validity is shown already in weak modal logics K and T. Key to the gained simplifications of Gödel’s original theory is the exploitation of a link to the notions of filter and ultrafilter in topology. The paper illustrates how modern knowledge representation and reasoning technology for quantified non-classical logics can contribute new knowledge to other disciplines. The contributed material is also well suited to support teaching of non-trivial logic formalisms in classroom.

[1]  Christoph Benzmüller,et al.  Universal (meta-)logical reasoning: Recent successes , 2019, Sci. Comput. Program..

[2]  Sobel on Gödel’s Ontological Proof , 2006 .

[3]  A. Hazen,et al.  On Gödel's ontological proof , 1998 .

[4]  E. Zalta,et al.  How to say goodbye to the third man , 2000 .

[5]  Lawrence C. Paulson,et al.  Extending Sledgehammer with SMT Solvers , 2011, Journal of Automated Reasoning.

[6]  Geoff Sutcliffe,et al.  Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure , 2010, J. Formaliz. Reason..

[7]  Christoph Benzmüller,et al.  Computer-supported Exploration of a Categorical Axiomatization of Modeloids , 2020, RAMiCS.

[8]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[9]  Johannes Fürnkranz,et al.  KI 2017: Advances in Artificial Intelligence , 2017, Lecture Notes in Computer Science.

[10]  Bruno Woltzenlogel Paleo,et al.  Automating Gödel's Ontological Proof of God's Existence with Higher-order Automated Theorem Provers , 2014, ECAI.

[11]  Christoph Benzmüller,et al.  Computer Science and Metaphysics: A Cross-Fertilization , 2019, Open Philosophy.

[12]  S. Josephson,et al.  Australasian Journal of Philosophy, , 2013 .

[13]  D. Sudakin,et al.  Appendix A , 2007, Journal of agromedicine.

[14]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[15]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[16]  J. Thomson On being and saying : essays for Richard Cartwright , 1987 .

[17]  Bart Van den Bossche,et al.  « Nous »! , 2021 .

[18]  Christoph Benzmüller,et al.  Automating Emendations of the Ontological Argument in Intensional Higher-Order Modal Logic , 2017, KI.

[19]  Bruno Woltzenlogel Paleo,et al.  Variants of Gödel’s Ontological Proof in a Natural Deduction Calculus , 2017, Stud Logica.

[20]  Christoph Benzmüller,et al.  Einsatz von Theorembeweisern in der Lehre , 2016, HDI.

[21]  Edward N. Zalta,et al.  ON THE LOGIC OF THE ONTOLOGICAL ARGUMENT , 1991 .

[22]  Bruno Woltzenlogel Paleo,et al.  The Inconsistency in Gödel's Ontological Argument: A Success Story for AI in Metaphysics , 2016, IJCAI.

[23]  Christoph Benzmüller,et al.  Computer-supported Analysis of Positive Properties, Ultrafilters and Modal Collapse in Variants of Gödel's Ontological Argument , 2019, ArXiv.

[24]  Christoph Benzmüller,et al.  MECHANIZING PRINCIPIA LOGICO-METAPHYSICA IN FUNCTIONAL TYPE-THEORY , 2017, The Review of Symbolic Logic.

[25]  J. Davenport Editor , 1960 .

[26]  C. Anthony Anderson,et al.  Gödel's ontological proof revisited , 1996 .

[27]  Christoph Benzmüller,et al.  Automating Free Logic in HOL, with an Experimental Application in Category Theory , 2019, Journal of Automated Reasoning.

[28]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[29]  S. Kovac Modal collapse in Gödel's ontological proof , 2012 .

[30]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[31]  A. Anderson,et al.  Some Emendations of Gödel's Ontological Proof , 1990 .

[32]  Jordan Howard Sobel,et al.  Logic and Theism: Arguments for and against Beliefs in God , 2003 .

[33]  M. Fitting Types, Tableaus, and Gödel's God , 2002 .

[34]  Piergiorgio Odifreddi Ultrafilters, Dictators, and Gods , 2000, Finite Versus Infinite.

[35]  Christoph Benzmüller,et al.  Church’s Type Theory , 2006 .

[36]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[37]  Branden Fitelson,et al.  Steps Toward a Computational Metaphysics , 2007, J. Philos. Log..

[38]  Ben Blumson Anselm's God in Isabelle/HOL , 2017, Arch. Formal Proofs.

[39]  Edward N. Zalta,et al.  A Computationally-Discovered Simplification of the Ontological Argument , 2011 .

[40]  Tim Lethen,et al.  THE DEVELOPMENT OF GÖDEL’S ONTOLOGICAL PROOF , 2019, The Review of Symbolic Logic.

[41]  Edward N. Zalta,et al.  Twenty-five basic theorems in situation and world theory , 1993, J. Philos. Log..

[42]  Jesse Alama,et al.  Automating Leibniz's Theory of Concepts , 2015, CADE.

[43]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .