Some considerations of the invertibility verifications for linear elliptic operators

This paper presents three computer-assisted procedures for verifying the invertibility of second-order linear elliptic operators and for computing a bound on the norm of its inverse. One of these procedures is an improvement of a theorem by Nakao et al. (Computing 75:1–14, 2005) that uses projection and constructive a priori error estimates and was proposed by two of the authors of this paper. Results verifying these procedures are presented for several numerical examples.

[1]  Ravi P. Agarwal Contributions in Numerical Mathematics , 1993 .

[2]  Numerical verification method for infinite dimensional eigenvalue problems , 2009 .

[3]  Nobito Yamamoto,et al.  A Numerical Verification of Nontrivial Solutions for the Heat Convection Problem , 2004 .

[4]  Mitsuhiro Nakao,et al.  Numerical verification methods for solutions of semilinear elliptic boundary value problems , 2011 .

[5]  Kouji Hashimoto,et al.  A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains , 2006 .

[6]  Fumio Kikuchi,et al.  Determination of the Babuska-Aziz constant for the linear triangular finite element , 2006 .

[7]  Nobito Yamamoto,et al.  A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Elements , 2001 .

[8]  Mitsuhiro T. Nakao,et al.  A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Elements , 2001, Perspectives on Enclosure Methods.

[9]  Ulrich W. Kulisch,et al.  Perspectives on Enclosure Methods , 2001 .

[10]  T. Csendes Developments in Reliable Computing , 2000 .

[11]  Nobito Yamamoto,et al.  Error estimation with guaranteed accuracy of finite element method in nonconvex polygonal domains , 2003 .

[12]  Kouji Hashimoto,et al.  A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems , 2005 .

[13]  Mitsuhiro T. Nakao NUMERICAL VERIFICATION METHODS FOR SOLUTIONS OF ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS , 2000 .

[14]  Seiji Kimura,et al.  On the Best Constant in the Error Bound for theH10-Projection into Piecewise Polynomial Spaces , 1998 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Nobito Yamamoto,et al.  Numerical verifications of solutions for elliptic equations in nonconvex polygonal domains , 1993 .

[18]  Yoshitaka Watanabe,et al.  A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations , 2013, Math. Comput..

[19]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[20]  Nobito Yamamoto,et al.  Numerical Verification of Solutions for Nonlinear Elliptic Problems Using anL∞Residual Method☆ , 1998 .

[21]  Yoshitaka Watanabe,et al.  A Numerical Method to Verify the Invertibility of Linear Elliptic Operators with Applications to Nonlinear Problems , 2005, Computing.

[22]  Kenta Kobayashi A constructive a priori error estimation for finite element discretizations in a non-convex domain using singular functions , 2009 .

[23]  Nobito Yamamoto,et al.  On error estimation of finite element approximations to the elliptic equations in nonconvex polygonal domains , 2007 .