Estimating the Backward Error in LSQR
暂无分享,去创建一个
[1] Ming Gu,et al. Backward Perturbation Bounds for Linear Least Squares Problems , 1999, SIAM J. Matrix Anal. Appl..
[2] Gene H. Golub,et al. Matrix computations , 1983 .
[3] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[4] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[5] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[6] Michael A. Saunders,et al. Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.
[7] Xiao-Wen Chang,et al. Stopping Criteria for the Iterative Solution of Linear Least Squares Problems , 2009, SIAM J. Matrix Anal. Appl..
[8] R. Karlson,et al. Estimation of optimal backward perturbation bounds for the linear least squares problem , 1997 .
[9] Å. Björck,et al. Stability of Conjugate Gradient and Lanczos Methods for Linear Least Squares Problems , 1998, SIAM J. Matrix Anal. Appl..
[10] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[11] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[12] Ji-Guang Sun,et al. Optimal backward perturbation bounds for the linear least squares problem , 1995, Numer. Linear Algebra Appl..
[13] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[14] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[15] C. Paige. Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .
[16] M. Arioli,et al. Least-squares problems, normal equations, and stopping criteria for the conjugate gradient method , 2008 .
[17] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[18] Richard F. Barrett,et al. Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.
[19] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[20] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[21] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .