Rank-k modification methods for recursive least squares problems
暂无分享,去创建一个
Adam W. Bojanczyk | James M. Lebak | Serge J. Olszanskyj | S. J. Olszanskyj | A. Bojanczyk | J. Lebak
[1] Å. Björck,et al. Accurate Downdating of Least Squares Solutions , 1994, SIAM J. Matrix Anal. Appl..
[2] Gene H. Golub,et al. Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.
[3] A. Bjijrck. Stability Analysis of the Method of Seminormal Equations for Linear Least Squares Problems , 2001 .
[4] James G. Nagy,et al. Row householder transformations for rank-k Cholesky inverse modifications , 1992 .
[5] William Jalby,et al. Stability Analysis and Improvement of the Block Gram-Schmidt Algorithm , 1991, SIAM J. Sci. Comput..
[6] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[7] G. Stewart. The Effects of Rounding Error on an Algorithm for Downdating a Cholesky Factorization , 1979 .
[8] Å. Björck. Error Analysis of Least Squares Algorithms , 1991 .
[9] Åke Björck,et al. Comment on the Iterative Refinement of Least-Squares Solutions , 1978 .
[10] Åke Björck,et al. Stability analysis of the method of seminormal equations for linear least squares problems , 1987 .
[11] Leslie V. Foster,et al. Modifications of the Normal Equations Method that are Numerically Stable , 1991 .
[12] Simon Haykin,et al. Adaptive filter theory (2nd ed.) , 1991 .
[13] Charles M. Rader,et al. Hyperbolic householder transformations , 1986, IEEE Trans. Acoust. Speech Signal Process..
[14] Adam W. Bojanczyk,et al. Stabilized hyperbolic Householder transformations , 1989, International Conference on Acoustics, Speech, and Signal Processing,.
[15] Å. Björck. Numerics of Gram-Schmidt orthogonalization , 1994 .
[16] H. Wozniakowski,et al. Iterative refinement implies numerical stability , 1977 .
[17] S. Alexander,et al. Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing , 1988 .
[19] Robert J. Plemmons,et al. Least squares modifications with inverse factorizations: Parallel implications , 1989 .
[20] M. Rozložník. Numerics of Gram-Schmidt orthogonalization , 2007 .
[21] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[22] Christopher C. Paige,et al. Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm , 1992, SIAM J. Matrix Anal. Appl..
[23] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[24] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[25] M. Saunders. Large-scale linear programming using the Cholesky factorization , 1972 .
[26] Gene H. Golub,et al. Matrix computations , 1983 .