Shear stress characteristics of microtextured surfaces in gap-controlled hydrodynamic lubrication

Abstract Microtextured surfaces can reduce friction in lubricated dynamic contact. However, no prior experimental study has explored the dimensionless parameter space of Reynolds number and dimensionless gap, since normal force is easier to control than the fluid film thickness. Here, we develop a custom precision-aligned setup for gap-controlled tribo-rheometry based on a rotational rheometer. The novel experimental setup allows for measurement of full film lubrication of parallel disks down to 20 μm gaps with gap precision ±3 μm, over a range of Reynolds numbers. We show for the first time in gap-controlled conditions that microtextured surfaces reduce friction. The reduction in dimensionless shear stress is nearly independent of velocity for Re

[1]  J. Gong,et al.  Friction of Gels. 4. Friction on Charged Gels , 1999 .

[2]  Michael D. Johnston Precision rotational rheometry , 2014 .

[3]  J. Rothstein,et al.  Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces , 2005 .

[4]  I. Etsion,et al.  A Laser Surface Textured Hydrostatic Mechanical Seal , 2002 .

[5]  Edward Saibel,et al.  Surface Roughness Effect on Slider Bearing Lubrication , 1967 .

[6]  Siddarth Srinivasan,et al.  Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces , 2013 .

[7]  Izhak Etsion,et al.  A Laser Surface Textured Parallel Thrust Bearing , 2003 .

[8]  J. Vicente,et al.  A method for the estimation of the film thickness and plate tilt angle in thin film misaligned plate–plate rheometry , 2010 .

[9]  Andreas A. Polycarpou,et al.  Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication , 2013 .

[10]  Izhak Etsion,et al.  Friction-Reducing Surface-Texturing in Reciprocating Automotive Components , 2001 .

[11]  Staffan Jacobson,et al.  Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors , 2007 .

[12]  P. Moldenaers,et al.  A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference. , 2011, The Review of scientific instruments.

[13]  M. Khonsari,et al.  Effect of Dimple’s Internal Structure on Hydrodynamic Lubrication , 2013, Tribology Letters.

[14]  S. Ge,et al.  Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD , 2010 .

[15]  R. Connelly,et al.  High‐Shear Viscometry with a Rotational Parallel‐Disk Device , 1985 .

[16]  Izhak Etsion,et al.  A Model for Mechanical Seals with Regular Microsurface Structure , 1996 .

[17]  C. F. Curtiss,et al.  Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics , 1987 .

[18]  Michael M. Khonsari,et al.  On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm , 2009 .

[19]  J. Gong,et al.  Friction of Gels. 7. Observation of Static Friction between Like-Charged Gels , 2003 .

[20]  J. Stokes,et al.  On the gap error in parallel plate rheometry that arises from the presence of air when zeroing the gap , 2005 .

[21]  G. McKinley,et al.  The flexure-based microgap rheometer (FMR) , 2006 .

[22]  C. Clasen High shear rheometry using hydrodynamic lubrication flows , 2013 .

[23]  Chang-Hwan Choi,et al.  Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. , 2006, Physical review letters.

[24]  Izhak Etsion,et al.  Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces , 1999 .

[25]  Staffan Jacobson,et al.  Influence of surface texture on boundary lubricated sliding contacts , 2003 .

[26]  Ian M. Hutchings,et al.  Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions , 2007 .

[27]  Randy H. Ewoldt,et al.  Precision rheometry: Surface tension effects on low-torque measurements in rotational rheometers , 2013 .

[28]  Yoshihito Osada,et al.  Friction of Gels. 6. Effects of Sliding Velocity and Viscoelastic Responses of the Network , 2002 .

[29]  Xi Shi,et al.  Effects of groove textures on fully lubricated sliding with cavitation , 2011 .

[30]  J. A. Walowit,et al.  A Theory of Lubrication by Microirregularities , 1966 .

[31]  Fei Zhou,et al.  Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces , 2010 .

[32]  Roland Larsson,et al.  Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication , 2005 .

[33]  S. Ge,et al.  Hydrodynamic Lubrication of Surfaces with Asymmetric Microdimple , 2011 .

[34]  J. Vicente,et al.  On the nonparallelism effect in thin film plate–plate rheometry , 2011 .

[35]  M. Fillon,et al.  About the validity of Reynolds equation and inertia effects in textured sliders of infinite width , 2009 .

[36]  J. Rothstein Slip on Superhydrophobic Surfaces , 2010 .

[37]  Gareth H. McKinley,et al.  Bridging Tribology and Microrheology of Thin Films , 2010 .

[38]  M. Fillon,et al.  Analytical investigation of a partially textured parallel slider , 2009 .

[39]  G. McKinley,et al.  Tribo-Rheometry: From Gap-Dependent Rheology to Tribology , 2004 .

[40]  Michael M. Khonsari,et al.  Experimental investigation of tribological performance of laser textured stainless steel rings , 2011 .

[41]  Michael M. Khonsari,et al.  Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects , 2011 .

[42]  Izhak Etsion,et al.  Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components , 2002 .

[43]  Gareth H. McKinley,et al.  High shear rate viscometry , 2008 .

[44]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[45]  Uwe Thiele,et al.  Wetting of textured surfaces , 2002 .