Cauchy–Schwarz and Kantorovich type inequalities for scalar and matrix moment sequences

Abstract First we present various scalar inequalities that extends the classical Cauchy–Schwarz and Kantorovich inequalities. Some of these extensions are based on the moment problem and the Hölder and Minkowski inequalities. These results are then extended to the matrix case. Many well-known inequalities are recovered ans new ones are obtained.

[1]  Claude Brezinski,et al.  History of continued fractions and Pade approximants , 1990, Springer series in computational mathematics.

[2]  C. Brezinski,et al.  A Taste of Padé Approximation , 1995, Acta Numerica.

[3]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[4]  David W. Lewis,et al.  Matrix theory , 1991 .

[5]  E. Lieb,et al.  Some operator inequalities of the schwarz type , 1974 .

[6]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[7]  Jacek Gilewicz,et al.  Approximants de Padé , 1978 .

[8]  Claude Brezinski,et al.  Pade-Type Approximation and General Orthogonal Polynomials , 1981, The Mathematical Gazette.

[9]  W. J. Studden,et al.  A note on the matrix valued q-d algorithm and matrix orthogonal polynomials on [0, 1] and [0, ∞) , 2002 .

[10]  Haakon Waadeland,et al.  Continued fractions with applications , 1994 .

[11]  G. Pólya,et al.  Inequalities (Cambridge Mathematical Library) , 1934 .

[12]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[13]  A. Pinkus On L[1]-approximation , 1991 .

[14]  D. S. Mitrinovic,et al.  Classical and New Inequalities in Analysis , 1992 .

[15]  D. V. Widder,et al.  Review: J. A. Shohat and J. D. Tamarkin, The problem of moments , 1945 .

[16]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[17]  F. Riesz,et al.  Leçons d,analyse fonctionnelle , 1953 .

[18]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[19]  Marcos Raydan,et al.  Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method , 2002, Comput. Optim. Appl..

[20]  Ingram Olkin,et al.  Matrix versions of the Cauchy and Kantorovich inequalities , 1990 .

[21]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[22]  P. Macilwaine,et al.  Basic results and techniques , 1984 .

[23]  Claude Brezinski,et al.  Block Descent Methods and Hybrid Procedures for Linear Systems , 2002, Numerical Algorithms.

[24]  Holger Dette,et al.  The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .

[25]  J. Shohat,et al.  The problem of moments , 1943 .