Cauchy–Schwarz and Kantorovich type inequalities for scalar and matrix moment sequences
暂无分享,去创建一个
[1] Claude Brezinski,et al. History of continued fractions and Pade approximants , 1990, Springer series in computational mathematics.
[2] C. Brezinski,et al. A Taste of Padé Approximation , 1995, Acta Numerica.
[3] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[4] David W. Lewis,et al. Matrix theory , 1991 .
[5] E. Lieb,et al. Some operator inequalities of the schwarz type , 1974 .
[6] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[7] Jacek Gilewicz,et al. Approximants de Padé , 1978 .
[8] Claude Brezinski,et al. Pade-Type Approximation and General Orthogonal Polynomials , 1981, The Mathematical Gazette.
[9] W. J. Studden,et al. A note on the matrix valued q-d algorithm and matrix orthogonal polynomials on [0, 1] and [0, ∞) , 2002 .
[10] Haakon Waadeland,et al. Continued fractions with applications , 1994 .
[11] G. Pólya,et al. Inequalities (Cambridge Mathematical Library) , 1934 .
[12] W. J. Thron,et al. Continued Fractions: Analytic Theory and Applications , 1984 .
[13] A. Pinkus. On L[1]-approximation , 1991 .
[14] D. S. Mitrinovic,et al. Classical and New Inequalities in Analysis , 1992 .
[15] D. V. Widder,et al. Review: J. A. Shohat and J. D. Tamarkin, The problem of moments , 1945 .
[16] Fuzhen Zhang. Matrix Theory: Basic Results and Techniques , 1999 .
[17] F. Riesz,et al. Leçons d,analyse fonctionnelle , 1953 .
[18] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[19] Marcos Raydan,et al. Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method , 2002, Comput. Optim. Appl..
[20] Ingram Olkin,et al. Matrix versions of the Cauchy and Kantorovich inequalities , 1990 .
[21] D. Widder,et al. The Laplace Transform , 1943, The Mathematical Gazette.
[22] P. Macilwaine,et al. Basic results and techniques , 1984 .
[23] Claude Brezinski,et al. Block Descent Methods and Hybrid Procedures for Linear Systems , 2002, Numerical Algorithms.
[24] Holger Dette,et al. The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .
[25] J. Shohat,et al. The problem of moments , 1943 .