TUNA-Net: Task-oriented UNsupervised Adversarial Network for Disease Recognition in Cross-Domain Chest X-rays

In this work, we exploit the unsupervised domain adaptation problem for radiology image interpretation across domains. Specifically, we study how to adapt the disease recognition model from a labeled source domain to an unlabeled target domain, so as to reduce the effort of labeling each new dataset. To address the shortcoming of cross-domain, unpaired image-to-image translation methods which typically ignore class-specific semantics, we propose a task-driven, discriminatively trained, cycle-consistent generative adversarial network, termed TUNA-Net. It is able to preserve 1) low-level details, 2) high-level semantic information and 3) mid-level feature representation during the image-to-image translation process, to favor the target disease recognition task. The TUNA-Net framework is general and can be readily adapted to other learning tasks. We evaluate the proposed framework on two public chest X-ray datasets for pneumonia recognition. The TUNA-Net model can adapt labeled adult chest X-rays in the source domain such that they appear as if they were drawn from pediatric X-rays in the unlabeled target domain, while preserving the disease semantics. Extensive experiments show the superiority of the proposed method as compared to state-of-the-art unsupervised domain adaptation approaches. Notably, TUNA-Net achieves an AUC of 96.3% for pediatric pneumonia classification, which is very close to that of the supervised approach (98.1%), but without the need for labels on the target domain.

[1]  Yuxing Tang,et al.  XLSor: A Robust and Accurate Lung Segmentor on Chest X-Rays Using Criss-Cross Attention and Customized Radiorealistic Abnormalities Generation , 2018, MIDL.

[2]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[3]  Yuxing Tang,et al.  Deep adversarial one-class learning for normal and abnormal chest radiograph classification , 2019, Medical Imaging.

[4]  Konstantinos Kamnitsas,et al.  Unsupervised domain adaptation in brain lesion segmentation with adversarial networks , 2016, IPMI.

[5]  R. Summers,et al.  Abnormal Chest X-Ray Identification With Generative Adversarial One-Class Classifier , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[6]  Yuxing Tang,et al.  Visual and Semantic Knowledge Transfer for Large Scale Semi-Supervised Object Detection , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Youbao Tang,et al.  MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation , 2019, MICCAI.

[8]  Yuxing Tang,et al.  Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs , 2018, MLMI@MICCAI.

[9]  Lin Yang,et al.  Translating and Segmenting Multimodal Medical Volumes with Cycle- and Shape-Consistency Generative Adversarial Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10]  Hao Chen,et al.  Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-ray Segmentation , 2018, MLMI@MICCAI.

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Yuxing Tang,et al.  Large Scale Semi-Supervised Object Detection Using Visual and Semantic Knowledge Transfer , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[14]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Yue Zhang,et al.  Task Driven Generative Modeling for Unsupervised Domain Adaptation: Application to X-ray Image Segmentation , 2018, MICCAI.

[16]  Nico Karssemeijer,et al.  Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation , 2017, MICCAI.

[17]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[18]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[19]  Yuxing Tang,et al.  Uldor: A Universal Lesion Detector For Ct Scans With Pseudo Masks And Hard Negative Example Mining , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[20]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.