Large phonon drag thermopower boosted by massive electrons and phonon leaking in LaAlO3/LaNiO3/LaAlO3 heterostructure

An unusually large thermopower (S) enhancement is induced by heterostructuring thin films of the strongly correlated electron oxide LaNiO3. The phonon-drag effect, which is not observed in bulk LaNiO3, enhances S for thin films compressively strained by LaAlO3 substrates. By a reduction in the layer thickness down to three unit cells and subsequent LaAlO3 surface termination, a 10 times S enhancement over the bulk value is observed due to large phonon drag S (Sg), and the Sg contribution to the total S occurs over a much wider temperature range up to 220 K. The Sg enhancement originates from the coupling of lattice vibration to the d electrons with large effective mass in the compressively strained ultrathin LaNiO3, and the electron–phonon interaction is largely enhanced by the phonon leakage from the LaAlO3 substrate and the capping layer. The transition-metal oxide heterostructures emerge as a new playground to manipulate electronic and phononic properties in the quest for high-performance thermoelectrics.

[1]  J. Xanthakis Electronic Conduction , 2020 .

[2]  A. Millis,et al.  Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films , 2018, Nature Communications.

[3]  M. Guennou,et al.  Conductivity and Local Structure of LaNiO3 Thin Films , 2017, Advanced materials.

[4]  V. Leborán,et al.  Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides , 2016 .

[5]  Z. Liao,et al.  Two-Carrier Transport Induced Hall Anomaly and Large Tunable Magnetoresistance in Dirac Semimetal Cd3As2 Nanoplates. , 2016, ACS nano.

[6]  A. Bostwick,et al.  Thickness-dependent electronic structure in ultrathin LaNiO 3 films under tensile strain , 2016 .

[7]  J. Thompson,et al.  Hall effect in the extremely large magnetoresistance semimetal WTe2 , 2015, 1509.01463.

[8]  A. Filippetti,et al.  Polaronic metal state at the LaAlO3/SrTiO3 interface , 2015, Nature Communications.

[9]  C. Walle,et al.  Limitations to the room temperature mobility of two- and three-dimensional electron liquids in SrTiO3 , 2015 .

[10]  X. Su,et al.  Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. , 2014, Physical chemistry chemical physics : PCCP.

[11]  D. Schlom,et al.  Atomic-scale control of competing electronic phases in ultrathin LaNiO₃. , 2014, Nature nanotechnology.

[12]  Sohrab Ismail-Beigi,et al.  Tuning the Structure of Nickelates to Achieve Two‐Dimensional Electron Conduction , 2014, Advanced materials.

[13]  Z. K. Liu,et al.  Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 , 2013, Nature.

[14]  C. Uher,et al.  Tuning the temperature domain of phonon drag in thin films by the choice of substrate. , 2013, Physical review letters.

[15]  Satoshi Okamoto,et al.  Gradual localization of Ni3dstates in LaNiO3ultrathin films induced by dimensional crossover , 2013 .

[16]  A. Maignan,et al.  From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties , 2013 .

[17]  R. Ramesh,et al.  Oxide interfaces: pathways to novel phenomena , 2012 .

[18]  H. Habermeier,et al.  Long-range transfer of electron-phonon coupling in oxide superlattices. , 2012, Nature materials.

[19]  J. Rondinelli,et al.  Strain-controlled band engineering and self-doping in ultrathin LaNiO 3 films , 2012, 1204.2039.

[20]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[21]  A. Millis,et al.  Whither the oxide interface. , 2012, Nature materials.

[22]  Leon Balents,et al.  Metal-insulator transition in a two-band model for the perovskite nickelates , 2011, 1107.0724.

[23]  H.-U. Habermeier,et al.  Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices , 2011, Science.

[24]  M. Gabay,et al.  Metal-insulator transition in ultrathin LaNiO3 films. , 2011, Physical review letters.

[25]  P. Thuéry,et al.  Hole and electron contributions to the transport properties of Ba ( Fe 1 − x Ru x ) 2 As 2 single crystals , 2010, 1003.5376.

[26]  Leon Balents,et al.  Low-dimensional Mott material: transport in ultrathin epitaxial LaNiO3 films , 2010 .

[27]  H. Ohashi,et al.  Fermi surfaces, electron-hole asymmetry, and correlation kink in a three-dimensional Fermi liquid LaNiO 3 , 2009, 0903.1487.

[28]  F. Chou,et al.  Seebeck coefficient of Na x CoO 2 : Measurements and a narrow-band model , 2009 .

[29]  V. Kabanov,et al.  Electron relaxation in metals : Theory and exact analytical solutions , 2008, 0809.0818.

[30]  J. Goodenough,et al.  Anomalous electronic state in CaCrO3 and SrCrO3. , 2005, Physical review letters.

[31]  Kamran Behnia,et al.  On the thermoelectricity of correlated electrons in the zero-temperature limit , 2004, cond-mat/0405030.

[32]  R. Greene,et al.  Electronic conduction in : the dependence on the oxygen stoichiometry , 1998 .

[33]  Xu,et al.  Resisitivity, thermopower, and susceptibility of RNiO3 (R=La,Pr). , 1993, Physical review. B, Condensed matter.

[34]  G. Shivashankar,et al.  Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3) , 1991 .

[35]  Patrick A. Lee,et al.  Disordered Electronic Systems , 1985, The Quantum Nature of Materials.

[36]  P. Anderson,et al.  Quasiparticle lifetime in disordered two-dimensional metals , 1981 .

[37]  Boris L. Altshuler,et al.  Interaction Effects in Disordered Fermi Systems in Two Dimensions , 1980 .

[38]  W. E. Lawrence,et al.  Electron-Electron Scattering in the Transport Coefficients of Simple Metals , 1973 .

[39]  Conyers Herring,et al.  Theory of the Thermoelectric Power of Semiconductors , 1954 .

[40]  J. Tauc,et al.  Theory of Thermoelectric Power in Semiconductors , 1954 .

[41]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.