Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination

A new 8-node decohesion element with mixed mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a strain softening law to track the damage state of the interface. The method can be used in conjunction with conventional material degradation procedures to account for inplane and intra-laminar damage modes. The accuracy of the predictions is evaluated in single mode delamination tests, in the mixed-mode bending test, and in a structural configuration consisting of the debonding of a stiffener flange from its skin.

[1]  P.M.S.T. de Castro,et al.  Prediction of compressive strength of carbon–epoxy laminates containing delamination by using a mixed-mode damage model , 2000 .

[2]  P.M.S.T. de Castro,et al.  Interface element including point‐to‐surface constraints for three‐dimensional problems with damage propagation , 2000 .

[3]  F. L. Matthews,et al.  Predicting Progressive Delamination of Composite Material Specimens via Interface Elements , 1999 .

[4]  F. L. Matthews,et al.  Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates , 1999 .

[5]  Pierre J. A. Minguet,et al.  Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading , 1999 .

[6]  J. Pierre,et al.  Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading , 1998 .

[7]  Jr. J. Crews,et al.  A Mixed-Mode Bending Apparatus for Delamination Testing , 1998 .

[8]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[9]  A. T. Marques,et al.  Modeling Compression Failure after Low Velocity Impact on Laminated Composites Using Interface Elements , 1997 .

[10]  I. M. May,et al.  A LOCAL ARC-LENGTH PROCEDURE FOR STRAIN SOFTENING , 1997 .

[11]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[12]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[13]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[14]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[15]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[16]  C. Dávila,et al.  Analysis of delamination initiation in postbuckled dropped-ply laminates , 1963 .

[17]  Pierre J. A. Minguet,et al.  Fatigue Debonding Characterization in Composite Skin/Stringer Configurations , 1998 .

[18]  Michael R Wisnom,et al.  PREDICTION OF DELAMINATION INITIATION AND GROWTH FROM DISCONTINUOUS PLIES USING INTERFACE ELEMENTS , 1998 .

[19]  Laurent Daudeville,et al.  Delamination analysis by damage mechanics: Some applications , 1995 .

[20]  J. R. Reeder,et al.  Nonlinear Analysis and Redesign of the Mixed-Mode Bending Delamination Test , 1991 .

[21]  R. de Borst,et al.  Numerical Simulation of Free Edge Delamination in Graphite-Epoxy Laminates under Uniaxial Tension , 1991 .

[22]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[23]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .