On Multisymplecticity of Partitioned Runge-Kutta Methods
暂无分享,去创建一个
[1] J. Butcher. Implicit Runge-Kutta processes , 1964 .
[2] Alvaro L. Islas,et al. Multi-symplectic methods for generalized Schrödinger equations , 2003, Future Gener. Comput. Syst..
[3] U. Ascher,et al. Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .
[4] L. Jay. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .
[5] Jason Frank,et al. Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..
[6] U. Ascher,et al. On symplectic and multisymplectic schemes for the KdV equation , 2005 .
[7] Theodore E. Simos,et al. Symplectic Partitioned Runge-Kutta methods with minimal phase-lag , 2010, Comput. Phys. Commun..
[8] Approximate Model Equations for Water Waves , 2005 .
[9] J. Bona,et al. Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[10] P. Hydon,et al. Multisymplectic conservation laws for differential and differential-difference equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[12] J. M. Sanz-Serna,et al. Partitioned Runge-Kutta methods for separable Hamiltonian problems , 1993 .
[13] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] P. Rentrop,et al. Multirate Partitioned Runge-Kutta Methods , 2001 .
[15] V. Buchstaber,et al. Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .
[16] Zaijiu Shang,et al. KAM theorem of symplectic algorithms for Hamiltonian systems , 1999, Numerische Mathematik.
[17] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[18] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[19] Geng Sun,et al. The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs , 2005, Math. Comput..
[20] Jason Frank,et al. On the multisymplecticity of partitioned Runge–Kutta and splitting methods , 2007, Int. J. Comput. Math..
[21] Jing-Bo Chen. Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the "good" Boussinesq equation , 2005, Appl. Math. Comput..
[22] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[23] Thomas J. Bridges,et al. Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[24] Brian E. Moore,et al. Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..