Catastrophe bond pricing for the two-factor Vasicek interest rate model with automatized fuzzy decision making

Catastrophe bonds are financial instruments, which enable to transfer the natural catastrophe risk to financial markets. This paper is a continuation of our earlier research concerning catastrophe bond pricing. We assume the absence of arbitrage and neutral attitude of investors toward catastrophe risk. The interest rate behavior is described by the two-factor Vasicek model. To illustrate and analyze obtained results, we conduct Monte Carlo simulations, using parameters fitted for real data on natural catastrophes. Besides the crisp cat bond pricing formulas, we obtain their fuzzy counterparts, taking into account the uncertainty on the market. Moreover, we propose an automated approach for decision making in fuzzy environment with relevant examples presenting this method.

[1]  Krzysztof Piasecki On Imprecise Investment Recommendations , 2014 .

[2]  P. Nowak,et al.  Catastrophe Bond Pricing with Fuzzy Volatility Parameters , 2014 .

[3]  J. David Cummins,et al.  Can insurers pay for the "big one"? Measuring the capacity of the insurance market to respond to catastrophic losses , 2002 .

[4]  Taicir Loukil,et al.  A Stochastic Approach to Product-Driven Supply Chain Design , 2015 .

[5]  Piotr Nowak,et al.  ON JACOD–GRIGELIONIS CHARACTERISTICS FOR HILBERT SPACE VALUED SEMIMARTINGALES , 2002 .

[6]  P. Nowak,et al.  Pricing and simulations of catastrophe bonds , 2013 .

[7]  P. Vasant,et al.  Hybrid Mesh Adaptive Direct Search Genetic Algorithms and Line Search Approaches for Fuzzy Optimization Problems in Production Planning , 2013, Handbook of Optimization.

[8]  Pandian Vasant,et al.  Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance , 2012 .

[9]  Malgorzata Charytanowicz,et al.  BAYES SHARPENING OF IMPRECISE INFORMATION , 2005 .

[10]  Maciej Romaniuk,et al.  Computing option price for Levy process with fuzzy parameters , 2010, Eur. J. Oper. Res..

[11]  Maciej Romaniuk,et al.  Application of EDGE software and simulations for integrated catastrophe management , 2005 .

[12]  Samuel H. Cox,et al.  Economic Aspects of Securitization of Risk , 2000, ASTIN Bulletin.

[13]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[14]  Leo Mršić,et al.  Widely Applicable Multi-Variate Decision Support Model for Market Trend Analysis and Prediction with Case Study in Retail , 2014 .

[15]  Maciej Romaniuk,et al.  Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework , 2014, J. Comput. Appl. Math..

[16]  Piotr Nowak,et al.  Analysis of Applications of Some Ex-Ante Instruments for the Transfer of Catastrophic Risks , 1999 .

[17]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[18]  Averill M. Law,et al.  Simulation Modeling & Analysis , 1991 .

[19]  Pandian Vasant Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications , 2013 .

[20]  Yu. M. Ermol'yev,et al.  Problems on Insurance of Catastrophic Risks , 2001 .

[21]  Malcolm James Beynon,et al.  Analysing the Returns-Earnings Relationship: Dempster-Shafer Theory and Evolutionary Computation Based Analyses Using the Classification and Ranking Belief Simplex , 2013 .

[22]  Alexander Muermann,et al.  Market Price of Insurance Risk Implied by Catastrophe Derivatives , 2008 .

[23]  John C. Hull,et al.  Numerical Procedures for Implementing Term Structure Models I , 1994 .

[24]  T. Ermolieva,et al.  Evaluation of Portfolio of Financial and Insurance Instruments: Simulation of Uncertainty , 2012 .

[25]  Harvey E. Lapan,et al.  The Mathematical Theory of Insurance. , 1975 .

[26]  Malgorzata Charytanowicz,et al.  A complete gradient clustering algorithm formed with kernel estimators , 2010, Int. J. Appl. Math. Comput. Sci..

[27]  Petr Dostál The Use of Soft Computing for Optimization in Business, Economics, and Finance , 2015 .

[28]  Krzysztof Burnecki,et al.  Modelling catastrophe claims with left-truncated severity distributions , 2006, Comput. Stat..

[29]  M. Puhle Bond Portfolio Optimization , 2008 .

[30]  Maciej Romaniuk,et al.  A fuzzy approach to option pricing in a Levy process setting , 2013, Int. J. Appl. Math. Comput. Sci..

[31]  Claus Munk,et al.  Fixed Income Modelling , 2011 .

[32]  Pandian Vasant,et al.  Handbook of Research on Artificial Intelligence Techniques and Algorithms , 2015 .

[33]  A. Shiryaev Essentials of stochastic finance , 1999 .

[34]  Niccolò Gordini,et al.  Genetic Algorithms for Small Enterprises Default Prediction: Empirical Evidence from Italy , 2014 .

[35]  Hsien-Chung Wu,et al.  Pricing European options based on the fuzzy pattern of Black-Scholes formula , 2004, Comput. Oper. Res..

[36]  Pandian Vasant,et al.  Innovation in Power, Control, and Optimization: Emerging Energy Technologies , 2011 .

[37]  Victor E. Vaugirard Pricing catastrophe bonds by an arbitrage approach , 2003 .

[38]  Michał Nowicki,et al.  WiFi - guided visual loop closure for indoor navigation using mobile devices , 2014 .