Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures.

[1]  Ying Ran,et al.  Nearly flat band with Chern numberC=2on the dice lattice , 2011, 1109.3435.

[2]  S. Okamoto,et al.  Possible interaction driven topological phases in (111) bilayers of LaNiO3 , 2011, 1109.1551.

[3]  A. Ruegg,et al.  Topological insulators from complex orbital order in transition-metal oxides heterostructures , 2011, 1109.1297.

[4]  J. van den Brink,et al.  Narrowing of topological bands due to electronic orbital degrees of freedom. , 2011, Physical review letters.

[5]  C. Chamon,et al.  Fractional topological liquids with time-reversal symmetry and their lattice realization , 2011, 1106.3989.

[6]  D. Sheng,et al.  Fractional quantum Hall effect of hard-core bosons in topological flat bands. , 2011, Physical review letters.

[7]  L. Sheng,et al.  Fractional quantum Hall effect in the absence of Landau levels , 2011, Nature communications.

[8]  Hosho Katsura,et al.  Nearly flatbands with nontrivial topology. , 2010, Physical review letters.

[9]  C. Chamon,et al.  Fractional quantum Hall states at zero magnetic field. , 2010, Physical review letters.

[10]  Xiao-Gang Wen,et al.  High-temperature fractional quantum Hall states. , 2010, Physical review letters.

[11]  Ho Nyung Lee,et al.  Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite , 2010, 1004.3306.

[12]  Satoshi Okamoto,et al.  Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. , 2010, Physical review letters.

[13]  Z. Meng,et al.  Quantum spin liquid emerging in two-dimensional correlated Dirac fermions , 2010, Nature.

[14]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[15]  A. Ohtomo,et al.  Epitaxial Structure of (001)- and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition , 2010, Crystal growth & design.

[16]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[17]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[18]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[19]  L. Balents,et al.  Spin-orbital singlet and quantum critical point on the diamond lattice: FeSc2S4. , 2008, Physical review letters.

[20]  Jan Kunes,et al.  Quantum spin Hall effect in a transition metal oxide Na2IrO3. , 2008, Physical review letters.

[21]  S. J. Moon,et al.  Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Sr n+1Ir nO3n+1 (n=1, 2, and infinity). , 2008, Physical review letters.

[22]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[23]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[24]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[25]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[26]  S. J. Moon,et al.  Dimensionality-Controlled Insulator-Metal Transition and Correlated Metallic State in 5 d Transition Metal Oxides Sr n þ 1 Ir n O 3 n þ 1 ( n ¼ 1 , 2, and 1 ) , 2008 .

[27]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[28]  M. Fisher,et al.  Particle-hole symmetry and the nu=5/2 quantum Hall state. , 2007, Physical review letters.

[29]  B. Rosenow,et al.  Particle-hole symmetry and the Pfaffian state. , 2007, Physical review letters.

[30]  G. Cao,et al.  Non-Fermi-liquid behavior in nearly ferromagnetic SrIrO3 single crystals , 2007, 0706.4319.

[31]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[32]  J. E. Moore,et al.  Topological invariants of time-reversal-invariant band structures , 2006, cond-mat/0607314.

[33]  X. Qi,et al.  Spin-orbit gap of graphene: First-principles calculations , 2006, cond-mat/0606350.

[34]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[35]  Shuichi Murakami,et al.  Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. , 2006, Physical review letters.

[36]  J. E. Hill,et al.  Intrinsic and Rashba spin-orbit interactions in graphene sheets , 2006, cond-mat/0606504.

[37]  C. Kane,et al.  Time Reversal Polarization and a Z 2 Adiabatic Spin Pump , 2006, cond-mat/0606336.

[38]  A. Kitaev,et al.  Detecting non-Abelian statistics in the nu = 5/2 fractional quantum hall state. , 2005, Physical review letters.

[39]  K. Saito,et al.  MOCVD growth of epitaxial SrIrO3 films on (111)SrTiO3 substrates , 2005 .

[40]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[41]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[42]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[43]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[44]  E. Takayama-Muromachi,et al.  Enhanced paramagnetism of the 4 d itinerant electrons in the rhodium oxide perovskite SrRhO 3 , 2001, cond-mat/0109522.

[45]  Y. Tokura,et al.  Perovskite superlattices as tailored materials of correlated electrons , 2001 .

[46]  N. Tsuda,et al.  Electrical and Magnetic Properties of Ca1-xLaxRuO3. , 1999 .

[47]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  M. Jansen,et al.  Synthesis and Crystal Structure Determination of LaAuO3 , 1993 .

[51]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[52]  C. Brandle,et al.  Growth of single crystals of lanthanum aluminate , 1991 .

[53]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[54]  D. Papaconstantopoulos,et al.  Band structure and electron-phonon interaction of LaAgO3 , 1988 .

[55]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[56]  J. Bockris,et al.  The photoelectrochemical response of the lanthanides of chromium, rhodium, vanadium and gold on a titanium base , 1980 .

[57]  J. Vallin Dynamic Jahn-Teller Effect in the OrbitalE5State ofFe2+in CdTe , 1970 .

[58]  Herbert Malamud,et al.  Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology , 1985 .

[59]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[60]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .