Randomness and reducibility
暂无分享,去创建一个
Rodney G. Downey | Denis R. Hirschfeldt | Geoffrey LaForte | R. Downey | G. LaForte | D. Hirschfeldt
[1] R. Solomonoff. A PRELIMINARY REPORT ON A GENERAL THEORY OF INDUCTIVE INFERENCE , 2001 .
[2] Cristian S. Calude,et al. Degree-Theoretic Aspects of Computably Enumerable Reals , 1998 .
[3] Cristian S. Calude,et al. Mathematics: Randomness everywhere , 1999, Nature.
[4] André Nies,et al. Randomness, Computability, and Density , 2001, STACS.
[5] L. Levin,et al. THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .
[6] Cristian S. Calude. Information and Randomness: An Algorithmic Perspective , 1994 .
[7] Martin Kummer. Kolmogorov Complexity and Instance Complexity of Recursively Enumerable Sets , 1996, SIAM J. Comput..
[8] R. M. Solovay. On Random R, E. Sets , 1977 .
[9] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[10] Cristian S. Calude,et al. Chaitin Numbers and Strong Reducibilities , 1997 .
[11] Cristian Claude,et al. Information and Randomness: An Algorithmic Perspective , 1994 .
[12] Manuel Lerman,et al. Computability Theory and Its Applications , 2000 .
[13] H. G. Rice,et al. Recursive real numbers , 1954 .
[14] Rodney G. Downey. Some Computability-Theoretical Aspects of Reals and Randomness , 2002 .
[15] Rodney G. Downey,et al. Presentations of computably enumerable reals , 2002, Theor. Comput. Sci..
[16] Chun-Kuen Ho,et al. Relatively Recursive Reals and Real Functions , 1994, Theor. Comput. Sci..
[17] Cristian S. Calude,et al. Program-Size Complexity of Initial Segments and Domination Reducibility , 1999, Jewels are Forever.
[18] André Nies,et al. Trivial Reals , 2002, CCA.
[19] Ker-I Ko,et al. On the Continued Fraction Representation of Computable Real Numbers , 1986, Theor. Comput. Sci..
[20] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[21] Cristian S. Calude,et al. Chaitin Omega Numbers and Strong Reducibilities , 1997, J. Univers. Comput. Sci..
[22] Klaus Weihrauch,et al. Weakly Computable Real Numbers , 2000, J. Complex..
[23] Cristian S. Calude. A characterization of c.e. random reals , 2002, Theor. Comput. Sci..
[24] Cristian S. Calude,et al. Recursively enumerable reals and Chaitin Ω numbers , 2001, Theoretical Computer Science.
[25] R. Soare. Recursive theory and Dedekind cuts , 1969 .
[26] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[27] Bakhadyr Khoussainov,et al. Recursively enumerable reals and Chaitin Ω numbers , 1998 .
[28] G. Chaitin. Incompleteness theorems for random reals , 1987 .
[29] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..
[30] Cristian S. Calude,et al. Recursively Enumerable Reals and Chaitin Omega Numbers , 1998, STACS.
[31] Claus-Peter Schnorr,et al. Process complexity and effective random tests , 1973 .
[32] Antonín Kucera,et al. Randomness and Recursive Enumerability , 2001, SIAM J. Comput..
[33] R. Soare. Recursively enumerable sets and degrees , 1987 .
[34] N. Costa,et al. Non-Classical Logics, Model Theory and Computability , 1980 .
[35] A. Troelstra. Models and computability , 1973 .
[36] Klaus Ambos-Spies,et al. Randomness in Computability Theory , 2000 .
[37] Robert I. Soare,et al. Cohesive sets and recursively enumerable Dedekind cuts , 1969 .
[38] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..
[39] Barbara F. Csima,et al. Applications of computability theory to prime models and differential geometry , 2003 .
[40] G. Paun,et al. Jewels are Forever , 1999, Springer Berlin Heidelberg.
[41] Jack H. Lutz,et al. Gales and the Constructive Dimension of Individual Sequences , 2000, ICALP.
[42] Gregory J. Chaitin,et al. Algorithmic Information Theory , 1987, IBM J. Res. Dev..
[43] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..