Mechanistic modeling of swarms

In this work, we provide an introduction to an emerging field which has recently received considerable attention, namely the analysis and modeling of swarms. In a very general sense, the term swarm is usually meant to signify a group of objects (agents) that interact with one another and have a collective goal. Point-mass, particulate-like models are frequently used to simulate the behavior of groups comprised of individual units whose interaction are represented by inter-particle forces. The interaction “forces” can represent, for example in the case of Unmanned Airborne Vehicles (UAVs), motorized propulsion arising from inter-vehicle communication and then actuation resulting in thrust. For a swarm member, these forces have two main components, attraction and repulsion, with the fellow swarm members and the surrounding environment. This work develops and investigates (1) basic models of such systems, (2) properties of swarm models and (3) numerical algorithms, in particular temporally adaptive methods, for swarm-like systems.

[1]  H. Jaeger,et al.  Physics of the Granular State , 1992, Science.

[2]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[3]  J. K. Hedrick,et al.  Dynamic Coupling in Vehicles Under Automatic Control , 1994 .

[4]  C. Breder Equations Descriptive of Fish Schools and Other Animal Aggregations , 1954 .

[5]  Manolis Papadrakakis,et al.  Large scale structural optimization: Computational methods and optimization algorithms , 2001 .

[6]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  T. Zohdi An adaptive‐recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids , 2002 .

[8]  Heinrich M. Jaeger,et al.  DYNAMICS OF GRANULAR MATERIAL , 1997 .

[9]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[10]  Liu,et al.  Sound in a granular material: Disorder and nonlinearity. , 1993, Physical review. B, Condensed matter.

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  G. Beni,et al.  The concept of cellular robotic system , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[13]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[14]  Tarek I. Zohdi,et al.  Computational design of swarms , 2003 .

[15]  Tarek I. Zohdi,et al.  Charge‐induced clustering in multifield particulate flows , 2005 .

[16]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[17]  Tarek I. Zohdi,et al.  Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids , 2004 .

[18]  Philip E. Gill,et al.  Practical optimization , 1981 .

[19]  Alex Fukunaga,et al.  Cooperative mobile robotics: antecedents and directions , 1995 .

[20]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Kolumban Hutter,et al.  Stability properties of shallow granular flows , 1998 .

[22]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[23]  H. Jaeger,et al.  The Physics of Granular Materials , 1996 .

[24]  Toni Feder Statistical physics is for the birds , 2007 .

[25]  Tarek I. Zohdi,et al.  Modeling and direct simulation of near-field granular flows , 2005 .

[26]  Tarek I. Zohdi,et al.  Computation of strongly coupled multifield interaction in particle–fluid systems , 2007 .

[27]  M. Papadrakakis,et al.  Structural optimization using evolutionary algorithms , 2002 .

[28]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[29]  H. Jaeger,et al.  Granular solids, liquids, and gases , 1996 .

[30]  K. Hutter,et al.  An accurate shock-capturing finite-difference method to solve the Savage-Hutter equations in avalanche dynamics , 2001, Annals of Glaciology.

[31]  Tarek I. Zohdi,et al.  Constrained inverse formulations in random material design , 2003 .

[32]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. , 2005 .

[33]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[34]  T I Zohdi,et al.  Genetic design of solids possessing a random–particulate microstructure , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[36]  Chinyere Okechi Onwubiko,et al.  Introduction to engineering design optimization , 1999 .

[37]  T. I. Zohdi,et al.  An introduction to modeling and simulation of particulate flows , 2007, Computational science and engineering.

[38]  S. B. Savage,et al.  Two-dimensional spreading of a granular avalanche down an inclined plane Part I. theory , 1993 .

[39]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[40]  Anita Mehta,et al.  Granular Matter: An Interdisciplinary Approach , 2011 .

[41]  R. Behringer Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials , 1999 .

[42]  M. Tomizuka,et al.  Control issues in automated highway systems , 1994, IEEE Control Systems.

[43]  Kevin M. Passino,et al.  Stability analysis of swarms , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[44]  Liu,et al.  Finite-size effects in a sandpile. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[45]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[46]  O. Axelsson Iterative solution methods , 1995 .

[47]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[48]  H. Makse,et al.  Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres , 2005 .

[49]  L. Alexander,et al.  X‐ray and electron diffraction , 1951 .

[50]  Tarek I. Zohdi,et al.  Particle collision and adhesion under the influence of near-fields , 2007 .

[51]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments , 1995 .

[52]  Kolumban Hutter,et al.  Pattern formation in granular avalanches , 1997 .

[53]  Aleksandar Donev,et al.  Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[55]  David M. Fratantoni,et al.  Multi-AUV Control and Adaptive Sampling in Monterey Bay , 2006, IEEE Journal of Oceanic Engineering.

[56]  Kumbakonam R. Rajagopal,et al.  On flows of granular materials , 1994 .

[57]  J. Jenkins,et al.  Particle spin in anisotropic granular materials , 2001 .

[58]  Kolumban Hutter,et al.  Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[59]  Kolumban Hutter,et al.  Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature , 1999, Journal of Fluid Mechanics.

[60]  J. Gray,et al.  Granular flow in partially filled slowly rotating drums , 2001, Journal of Fluid Mechanics.

[61]  Kolumban Hutter,et al.  Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and numerical computations , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[62]  J. Hedrick,et al.  String stability of interconnected systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[63]  Aleksandar Donev,et al.  Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Particles. I. Algorithmic Details II. Applications to Ellipses and Ellipsoids , 2004 .

[64]  Otto D Strack,et al.  Mean-field inelastic behavior of random arrays of identical spheres , 1993 .

[65]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[66]  K. Hutter,et al.  Unconfined flow of granular avalanches along a partly curved surface. I. Theory , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[67]  Kolumban Hutter,et al.  Shock-capturing and front-tracking methods for granular avalanches , 2015, 1501.04756.

[68]  Sebastian Noelle,et al.  Flow of dense avalanches past obstructions , 2001, Annals of Glaciology.

[69]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details , 2005 .

[70]  M. Papadrakakis,et al.  Advanced solution methods in structural optimization based on evolution strategies , 1998 .

[71]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[72]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[73]  Manolis Papadrakakis,et al.  Optimization of Large-Scale 3-D Trusses Using Evolution Strategies and Neural Networks , 1999 .

[74]  J. Bender,et al.  On the Flow Capacity of Automated Highways , 1970 .

[75]  J. K. Hedrick,et al.  Constant Spacing Strategies for Platooning in Automated Highway Systems , 1999 .

[76]  Michael R. M. Jenkin,et al.  A taxonomy for multi-agent robotics , 1996, Auton. Robots.

[77]  J. Jenkins,et al.  The incremental response of random aggregates of identical round particles , 2004, The European physical journal. E, Soft matter.

[78]  R. Behringer,et al.  Fluctuations in granular media. , 1999, Chaos.

[79]  By T. I. Zohdi Zohdi thermochemically reacting granular flows A computational framework for agglomeration in , 2004 .

[80]  William L. Hase,et al.  Molecular dynamics of clusters, surfaces, liquids, and interfaces , 1999 .

[81]  Heinrich M. Jaeger,et al.  What Is Shaking in the Sandbox? , 1994 .

[82]  Manolis Papadrakakis,et al.  STRUCTURAL SHAPE OPTIMIZATION USING EVOLUTION STRATEGIES , 1999 .

[83]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[84]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[85]  J. Shamma A connection between structured uncertainty and decentralized control of spatially invariant systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[86]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[87]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[88]  Aleksandar Donev,et al.  Unusually dense crystal packings of ellipsoids. , 2004, Physical Review Letters.

[89]  E Bonabeau,et al.  Swarm Intelligence: A Whole New Way to Think about Business , 2001 .

[90]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[91]  Sidney R. Nagel,et al.  Instabilities in a sandpile , 1992 .