Macro/micro simultaneous validation for multiscale analysis of semi-periodically perforated plate using full-field strain measurement

[1]  R. Hale An experimental investigation into strain distribution in 2D and 3D textile composites , 2003 .

[2]  C. Weinberger,et al.  Quantitative comparison between experimental measurements and CP-FEM predictions of plastic deformation in a tantalum oligocrystal , 2015 .

[3]  N. Ohno,et al.  Homogenized elastic–viscoplastic behavior of anisotropic open-porous bodies with pore pressure , 2012 .

[4]  Paolo Ermanni,et al.  Micro-computed tomography determination of glass fibre reinforced polymer meso structure , 2006 .

[5]  M. Zako,et al.  Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastics by homogenization theory , 2001 .

[6]  N. Takano,et al.  Structural strength prediction for porous titanium based on micro-stress concentration by micro-CT image-based multiscale simulation , 2010 .

[7]  A. Taşdemirci,et al.  Experimental and numerical studies on the quasi-static and dynamic crushing responses of multi-layer trapezoidal aluminum corrugated sandwiches , 2014 .

[8]  Catherine Mabru,et al.  Simplified modelling of the behaviour of 3D-periodic structures such as aircraft heat exchangers , 2008 .

[9]  Shujuan Hou,et al.  Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading , 2015 .

[10]  Hisao Kikuta,et al.  Bridge deflection measurement using digital image correlation , 2007 .

[11]  V. Carvelli,et al.  A homogenization procedure for the numerical analysis of woven fabric composites , 2001 .

[12]  T. Matsuda,et al.  Evaluation of thermo-viscoelastic property of CFRP laminate based on a homogenization theory , 2010 .

[13]  A. Long,et al.  Uncertainty in the manufacturing of fibrous thermosetting composites: A review , 2014 .

[14]  Z. Fawaz,et al.  Modeling fatigue damage evolution in polymer matrix composite structures and validation using in-situ digital image correlation , 2015 .

[15]  N. Ohno,et al.  Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation , 2002 .

[16]  D. Vandepitte,et al.  Nesting effect on the mode I fracture toughness of woven laminates , 2015 .

[17]  G. Chatzigeorgiou,et al.  Homogenization of elastoplastic composites with generalized periodicity in the microstructure , 2013 .

[18]  Etienne Patoor,et al.  Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests , 2015 .

[19]  N. Ohno,et al.  Effects of fiber distribution on elastic–viscoplastic behavior of long fiber-reinforced laminates , 2003 .

[20]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[21]  M. Sutton,et al.  Full-Field Deformation Measurement and Crack Mapping on Confined Masonry Walls Using Digital Image Correlation , 2014, Experimental Mechanics.

[22]  M. Zako,et al.  Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling , 2003 .

[23]  N. Ohno,et al.  Negative through-the-thickness Poisson’s ratio of elastic–viscoplastic angle-ply carbon fiber-reinforced plastic laminates: Homogenization analysis , 2014 .

[24]  J C Browne,et al.  Dynamic data‐driven finite element models for laser treatment of cancer , 2007, Numerical methods for partial differential equations.

[25]  N. Ohno,et al.  Elastic–viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of analysis , 2007 .

[26]  Fumiko Kawashima,et al.  High temperature strength and inelastic behavior of plate–fin structures for HTGR , 2007 .

[27]  Clifford Goodman,et al.  American Society of Mechanical Engineers , 1988 .

[28]  Tsu-Wei Chou,et al.  Compaction of woven-fabric preforms: nesting and multi-layer deformation , 2000 .

[29]  A homogenization theory for elastic–viscoplastic materials with misaligned internal structures , 2011 .

[30]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[31]  N. Ohno,et al.  A homogenization theory for elastic–viscoplastic composites with point symmetry of internal distributions , 2001 .

[32]  K. Sakaue,et al.  Evaluation of crack tip stress and strain fields under nonproportional loading in a viscoelastic material , 2008 .

[33]  Damiano Pasini,et al.  Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods , 2013 .

[34]  Sören Ehlers,et al.  Strain and stress relation for non-linear finite element simulations , 2009 .

[35]  N. Ohno,et al.  Homogenized properties of elastic–viscoplastic composites with periodic internal structures , 2000 .