Hysteretic Plate Finite Element

AbstractA hysteretic plate finite element for inelastic, static and dynamic analysis is presented and its performance is compared with currently used methods. A smooth, 3D hysteretic rate-independent model is utilized generalizing the uniaxial Bouc–Wen model. This is expressed in tensorial form, which incorporates the yield criterion and hardening law. The elastic mixed interpolation of tensorial components with four nodes (MITC4) element is extended by considering as additional hysteretic degrees of freedom the plastic strains at the Gauss points of each layer interface, which evolve following Bouc–Wen equations. Incorporating hysteretic relations directly into the element’s formulation is proved computationally advantageous and enables a better identification of the involved parameters in cyclic loading. The solution advances by establishing the equilibrium of external and internal forces on the basis of the initially computed stiffness and hysteretic structural matrices, thereby avoiding Gauss integrat...

[1]  H. Nguyen-Xuan,et al.  A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates , 2010 .

[2]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[3]  Jin Xu,et al.  An enriched 6-node MITC plate element for yield line analysis , 2013 .

[4]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method Linear Statics , 2013 .

[5]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[6]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[7]  K. Bathe,et al.  Mixed-interpolated elements for Reissner–Mindlin plates , 1989 .

[8]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .

[9]  Phill-Seung Lee,et al.  The quadratic MITC plate and MITC shell elements in plate bending , 2010, Adv. Eng. Softw..

[10]  Ivan Bartoli,et al.  A displacement-based finite element formulation for the analysis of laminated composite plates , 2013 .

[11]  K. Bathe Finite Element Procedures , 1995 .

[12]  Savvas P. Triantafyllou,et al.  Hysteretic Finite Elements for the Nonlinear Static and Dynamic Analysis of Structures , 2014 .

[13]  Savvas P. Triantafyllou,et al.  Bouc-Wen Type Hysteretic Plane Stress Element , 2012 .

[14]  J. N. Reddy,et al.  Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates , 1998 .

[15]  Savvas P. Triantafyllou,et al.  An hysteretic quadrilateral plane stress element , 2012 .

[16]  Petr Krysl,et al.  Static analysis of functionally graded plates using a nodal integrated finite element approach , 2013 .

[17]  Savvas P. Triantafyllou,et al.  An inelastic Timoshenko beam element with axial–shear–flexural interaction , 2011 .

[18]  M. L. Bucalém,et al.  Higher‐order MITC general shell elements , 1993 .

[19]  Klaus-Jürgen Bathe,et al.  The MITC9 shell element in plate bending: mathematical analysis of a simplified case , 2011 .

[20]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[21]  V. K. Koumousis,et al.  A Bouc–Wen model compatible with plasticity postulates , 2009 .

[22]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[23]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method , 2009 .

[24]  R. Bouc Forced Vibration of Mechanical Systems with Hysteresis , 1967 .

[25]  Klaus-Jürgen Bathe,et al.  A triangular six-node shell element , 2009 .

[26]  Cv Clemens Verhoosel,et al.  Non‐linear Finite Element Analysis , 2012 .

[27]  Phill-Seung Lee,et al.  Towards improving the MITC9 shell element , 2003 .

[28]  Jin Xu,et al.  An XFEM frame for plate elements in yield line analyses , 2013 .

[29]  Fabio Casciati,et al.  Stochastic dynamics of hysteretic media , 1989 .

[30]  A. E. Charalampakis,et al.  A consistent degrading Bouc–Wen model , 2014 .

[31]  Petr Krysl,et al.  A nine-node displacement-based finite element for Reissner-Mindlin plates based on an improved formulation of the NIPE approach , 2012 .

[32]  John Argyris,et al.  New developments in the inelastic analysis of quasistatic and dynamic problems , 1979 .

[33]  Klaus-Jürgen Bathe,et al.  Displacement and stress convergence of our MITC plate bending elements , 1990 .

[34]  T. Q. Bui,et al.  An efficient meshfree method for vibration analysis of laminated composite plates , 2011 .