Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation

Observed spectra normally contain spurious features along with those of interest and it is common practice to employ one of several available algorithms to remove the unwanted components. Low frequency spurious components are often referred to as ‘baseline’, ‘background’, and/or ‘background noise’. Here we examine a cross-section of non-instrumental methods designed to remove background features from spectra; the particular methods considered here represent approaches with different theoretical underpinnings. We compare and evaluate their relative performance based on synthetic data sets designed to exemplify vibrational spectroscopic signals in realistic contexts and thereby assess their suitability for computer automation. Each method is presented in a modular format with a concise review of the underlying theory, along with a comparison and discussion of their strengths, weaknesses, and amenability to automation, in order to facilitate the selection of methods best suited to particular applications.

[1]  H. R. Ralston,et al.  A COMPUTER METHOD OF PEAK AREA DETERMINATIONS FROM Ge--Li GAMMA SPECTRA. , 1968 .

[2]  Golotvin,et al.  Improved baseline recognition and modeling of FT NMR spectra , 2000, Journal of magnetic resonance.

[3]  J. Escalier,et al.  Automatic intensity, phase, and baseline corrections in quantitative carbon-13 spectroscopy , 1985 .

[4]  F F Papa,et al.  A recursive digital differentiator for ECG preprocessing. , 1994, Medical engineering & physics.

[5]  S Akselrod,et al.  Nonlinear high pass filter for R-wave detection in ECG signal. , 1997, Medical engineering & physics.

[6]  P. C. Chatwin,et al.  The treatment of atmospheric dispersion data in the presence of noise and baseline drift , 1995 .

[7]  Koen Janssens,et al.  AXIL-PC: software for the analysis of complex X-ray spectra , 1986 .

[8]  Hans Robert Kalbitzer,et al.  Baseline Correction in n-Dimensional NMR Spectra by Sectionally Linear Interpolation , 1993 .

[9]  M. Friedrichs A model-free algorithm for the removal of baseline artifacts , 1995, Journal of biomolecular NMR.

[10]  A. Mahadevan-Jansen,et al.  Automated Method for Subtraction of Fluorescence from Biological Raman Spectra , 2003, Applied spectroscopy.

[11]  T. J. Kennett,et al.  Automated analysis for high energy gamma ray spectra , 1981 .

[12]  V F Froelicher,et al.  Problems and limitations of ECG baseline estimation and removal using a cubic spline technique during exercise ECG testing: recommendations for proper implementation. , 1988, Journal of electrocardiology.

[13]  M. Deighton,et al.  Minimum-Noise Filters with Good Low-Frequency Rejection , 1969 .

[14]  Pavel Matousek,et al.  Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques , 2002 .

[15]  J. C. Mol,et al.  A Real-Time Gas Chromatographic Data System for Laboratory Applications , 1980 .

[16]  Niels Pind,et al.  Procedure for background estimation in energy-dispersive X-ray fluorescence spectra , 1986 .

[17]  H. Macfie,et al.  The effect of different baseline estimators on the limit of quantification in chromatography , 1997 .

[18]  W. Dietrich,et al.  Fast and precise automatic baseline correction of one- and two-dimensional nmr spectra , 1991 .

[19]  Christopher D. Brown,et al.  Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration , 2000 .

[20]  Hans Robert Kalbitzer,et al.  Improvement of two-dimensional NMR spectra by weighted mean t1-ridge subtraction and antidiagonal reduction , 1986 .

[21]  K. Wüthrich,et al.  FLATT—A new procedure for high-quality baseline correction of multidimensional NMR spectra , 1992 .

[22]  Trevor R. Griffiths,et al.  Some aspects of the scope and limitations of derivative spectroscopy , 1982 .

[23]  Steven E. J. Bell,et al.  Analysis of luminescent samples using subtracted shifted Raman spectroscopy , 1998 .

[24]  D. R. Cousens,et al.  SNIP, A STATISTICS-SENSITIVE BACKGROUND TREATMENT FOR THE QUANTITATIVE-ANALYSIS OF PIXE SPECTRA IN GEOSCIENCE APPLICATIONS , 1988 .

[25]  D. E. Jennings,et al.  Elimination of Baseline Variations from a Recorded Spectrum by Ultra-Low Frequency Filtering , 1980 .

[26]  C. Ryan,et al.  Developments in Dynamic Analysis for quantitative PIXE true elemental imaging , 2001 .

[27]  S P Levine,et al.  Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors. , 1993, Analytical chemistry.

[28]  B. Grosswendt Automatische analyse von γ-Spektren hoher Auflösung , 1971 .

[29]  Alexander J. Phillips,et al.  Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation , 1996 .

[30]  Edward T. Olejniczak,et al.  Extrapolation of time-domain data with linear prediction increases resolution and sensitivity , 1990 .

[31]  Giancarlo Ripamonti,et al.  MINIMUM-NOISE FILTER FOR BASELINE ESTIMATION IN RADIATION DETECTION SYSTEMS , 1996 .

[32]  Jonathan H. Perkins,et al.  Rapid functional group characterization of gas chromatography/Fourier transform infrared spectra by a principal components analysis based expert system , 1992 .

[33]  Olav M. Kvalheim,et al.  Multivariate prediction and background correction using local modeling and derivative spectroscopy , 1991 .

[34]  Kurt Wüthrich,et al.  Origin of τ2 and τ2 ridges in 2D NMR spectra and procedures for suppression , 1986 .

[35]  J D Wilson,et al.  The elimination of errors due to baseline drift in the measurement of peak areas in gas chromatography. , 1965, Journal of chromatography.

[36]  Volker Dose,et al.  Physical mixture modeling with unknown number of components , 2002 .

[37]  M. A. Raso,et al.  A General Fitting Program for Resolution of Complex Profiles - II. Automatic Baseline Correction , 1991, Comput. Chem..

[38]  S. Bell,et al.  Identification of dyes on ancient Chinese paper samples using the subtracted shifted Raman spectroscopy method. , 2000, Analytical chemistry.

[39]  B. Vandeginste,et al.  Critical evaluation of curve fitting in infrared spectrometry , 1975 .

[40]  Rachel E. Klevit,et al.  Improving two-dimensional NMR spectra by t1 ridge subtraction , 1985 .

[41]  Bernard Goldberg A Numerical Method of Resolving Peak Areas in Gas Chromatography , 1971 .

[42]  Riccardo Basosi,et al.  A Simple Method for Baseline Correction in EPR Spectroscopy: 2. The Use of Cubic Spline Functions , 1995 .

[43]  D. D. Burgess,et al.  A comparison of methods for baseline estimation in gamma-ray spectrometry , 1984 .

[44]  Riccardo Basosi,et al.  A simple method for baseline correction in EPR spectroscopy , 1994 .

[45]  H. C. Smit,et al.  Baseline correction method for second-harmonic detection with tunable diode lasers , 1986 .

[46]  T. Vickers,et al.  Curve Fitting and Linearity: Data Processing in Raman Spectroscopy , 2001 .

[47]  T. C. O'Haver,et al.  Numerical error analysis of derivative spectrometry for the quantitative analysis of mixtures , 1976 .

[48]  F. Caesar,et al.  A novel determination of peak areas for application on large computers , 1974 .

[49]  Y. Kawarasaki,et al.  A simple method for generation of background-free gamma-ray spectra , 1976 .

[50]  R. R. Walters,et al.  Effect of Baseline Errors on the Calculation of Statistical Moments of Tailed Chromatographic Peaks , 1984 .

[51]  T. C. O'Haver,et al.  Wavelength Modulation for Background Correction in Graphite Furnace Atomic Emission Spectrometry , 1976 .

[52]  Koen Janssens,et al.  Comparison of several background compensation methods useful for evaluation of energy-dispersive X-ray fluorescence spectra , 1995 .

[53]  W von der Linden,et al.  Signal and background separation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  T. J. Kennett,et al.  An automatic peak-extraction technique , 1972 .

[55]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[56]  F. Tao,et al.  Digital Integrators-Effect of Slope Sensitivity, Filtering and Baseline Correction Rate on Accuracy , 1967 .

[57]  P. Gans,et al.  On the Analysis of Raman Spectra by Curve Resolution , 1977 .

[58]  S. Lieberman,et al.  Fluorescence Rejection in Raman Spectroscopy by Shifted-Spectra, Edge Detection, and FFT Filtering Techniques , 1995 .

[59]  Charles K. Mann,et al.  Raman Measurements in the Presence of Fluorescence , 1987 .

[60]  Gerald A. Pearson,et al.  A general baseline-recognition and baseline-flattening algorithm , 1977 .

[61]  D Ebenezer,et al.  Wave digital matched filter for electrocardiogram preprocessing. , 1993, Journal of biomedical engineering.

[62]  William H. Press,et al.  Numerical recipes in C , 2002 .

[63]  Satoru Kishida,et al.  Background removal in x‐ray photoelectron spectroscopy , 1992 .

[64]  Giancarlo Ripamonti,et al.  Optimum zero-area filter for nuclear signal sequences , 1997 .

[65]  A. Bax,et al.  Baseline correction of 2D FT NMR spectra using a simple linear prediction extrapolation of the time-domain data , 1989 .

[66]  Chris Ryan,et al.  Quantitative, high sensitivity, high resolution, nuclear microprobe imaging of fluids, melts and minerals , 2002 .

[67]  B. R. Kowalski,et al.  Background detection and correction in multicomponent analysis , 1985 .

[68]  M. Billeter,et al.  Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. , 1998, Journal of magnetic resonance.

[69]  E. Katherine Kemsley,et al.  Transfer of spectral data between Fourier- transform infrared spectrometers for use in discriminant analysis of fruit purées , 1997 .

[70]  A. Rouh,et al.  The Use of Classification in Baseline Correction of FT NMR Spectra , 1993 .

[71]  William J. Teesdale,et al.  The Guelph PIXE software package II , 1989 .

[72]  Richard J. Tervo,et al.  Background estimation for gamma-ray spectrometry , 1983 .

[73]  A Jirasek,et al.  Accuracy and Precision of Manual Baseline Determination , 2004, Applied spectroscopy.

[74]  A. Arseniev,et al.  Base-plane correction in 2D NMR , 1987 .

[75]  John L. Markley,et al.  Compression of NMR data. Application to two-dimensional NMR spectroscopy and imaging , 1988 .

[76]  Tetsuo Iwata,et al.  New Method to Eliminate the Background Noise from a Line Spectrum , 1994 .

[77]  R. Anderson,et al.  Theory of the Derivative Spectrometer , 1970 .

[78]  Edward S. Yeung,et al.  Improvement of the limit of detection in chromatography by an integration method , 1985 .

[79]  W. Westmeier,et al.  Background subtraction in Ge(Li) gamma-ray spectra , 1981 .

[80]  S. J. Freeland,et al.  A Dynamic Background Correction System for Direct Reading Spectrometry , 1976 .

[81]  VON DER LINDEN HOW TO SEPARATE THE SIGNAL FROM THE BACKGROUNDW , 1996 .

[82]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[83]  P. M. Henrichs,et al.  Baseline roll and phase distortion of NMR spectra. An algorithm for the generation of reliable powder spectra of solids , 1986 .

[84]  Kazuaki Wagatsuma,et al.  Background subtraction from transition metal 2p XPS by deconvolution using ligand atom XPS: study on first transition metal cyanide complexes , 1997 .

[85]  Charles K. Mann,et al.  Background Correction in Raman Spectroscopic Determination of Dimethylsulfone, Sulfate, and Bisulfate , 1985 .

[86]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[87]  Richard A. Mathies,et al.  Effective Rejection of Fluorescence Interference in Raman Spectroscopy Using a Shifted Excitation Difference Technique , 1992 .

[88]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[89]  Reinhard Gerhards,et al.  A simple method for the fitting of baselines and resonance peaks in NMR spectroscopy , 1981 .

[90]  A. Tani,et al.  Investigation of a rapid and non-destructive fast-neutron activation analysis for many elements by using a semi-conductor detector , 1969 .

[91]  W. F. Maddams,et al.  The Scope and Limitations of Curve Fitting , 1980 .

[92]  Sven Tougaard,et al.  Quantitative analysis of the inelastic background in surface electron spectroscopy , 1988 .

[93]  R. Siuda,et al.  Inelastic background subtraction from a set of angle-dependent XPS spectra using PCA and polynomial approximation , 1999 .

[94]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[95]  Volker Dose,et al.  Bayesian Background Estimation , 2001 .

[96]  H. Georg Schulze,et al.  SNR Enhancement and Deconvolution of Raman Spectra Using a Two-Point Entropy Regularization Method , 1995 .

[97]  Douglas J. Moffatt,et al.  A Generalized Approach to Derivative Spectroscopy , 1987 .

[98]  Eugene E. Petersen,et al.  Integration of Chromatographic Signals by Digital Computers: an Approach for the Small Chromatographic Laboratory where Digital Computer Services are Available , 1971 .

[99]  Z. Hippe,et al.  Algorithms for high-level data processing in gas chromatography , 1980 .

[100]  M Eden,et al.  Elimination of baseline artifacts in spectra and their integrals , 1983 .

[101]  S. Steenstrup,et al.  A simple procedure for fitting a backgound to a certain class of measured spectra , 1981 .

[102]  Robert W. Field,et al.  Baseline subtraction using robust local regression estimation , 2001 .

[103]  Brani Vidakovic,et al.  Wavelet Estimation of a Baseline Signal from Repeated Noisy Measurements by Vertical Block Shrinkage , 2002 .

[104]  Ad Bax,et al.  Improved solvent suppression in one-and two-dimensional NMR spectra by convolution of time-domain data , 1989 .

[105]  T. J. Kennett,et al.  An automated background estimation procedure for gamma ray spectra , 1983 .

[106]  Volker Dose,et al.  Bayesian PIXE background subtraction , 1999 .

[107]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[108]  Walerian Kipiniak,et al.  A Basic Problem—The Measurement of Height and Area , 1981 .

[109]  Giancarlo Ripamonti,et al.  On the optimum area-balanced filters for nuclear spectroscopy☆ , 1996 .

[110]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[111]  William L. Griffin,et al.  Quantitative pixe microanalysis of geological matemal using the CSIRO proton microprobe , 1990 .

[112]  Gerd I. Johansson,et al.  Modifications of the HEX program for fast automatic resolution of PIXE-spectra , 1982 .

[113]  Harold J. Annegarn,et al.  Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds , 1996 .

[114]  Ad Bax,et al.  Baseline distortion in real-Fourier-transform NMR spectra , 1988 .