Global Optimization for Constrained Nonlinear Programming

In this thesis, we develop constrained simulated annealing (CSA), a global optimization algorithm that asymptotically converges to constrained global minima (CGM) with probability one, for solving discrete constrained nonlinear programming problems (NLPs). The algorithm is based on the necessary and sufficient condition for constrained local minima (CLM) in the theory of discrete constrained optimization using Lagrange multipliers developed in our group. The theory proves the equivalence between the set of discrete saddle points and the set of CLM, leading to the first-order necessary and sufficient condition for CLM. To find a CGM, CSA searches for a discrete saddle point with the minimum objective value by carrying out both probabilistic descents in the original-variable space of a discrete augmented Lagrangian function and probabilistic ascents in the Lagrange-multiplier space. We prove that CSA converges asymptotically to a CGM with probability one. We also extend CSA to solve continuous and mixed-integer constrained NLPs. By achieving asymptotic convergence, CSA represents one of the major developments in nonlinear constrained global optimization today, which complements simulated annealing (SA) in unconstrained global optimization. Based on CSA, we have studied various strategies of CSA and their trade-offs for solving continuous, discrete, and mixed-integer NLPs. The strategies evaluated include adaptive neighborhoods, distributions to control sampling, acceptance probabilities, and cooling schedules. An optimization software package based on CSA and its various strategies has been implemented. Finally, we apply CSA to solve a collection of engineering application benchmarks and design filters for subband image coding. Much better results have been reported in comparison with other existing methods.

[1]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Egon Balas,et al.  MINIMAX AND DUALITY FOR LINEAR AND NONLINEAR MIXED-INTEGER PROGRAMMING , 1969 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[6]  Fred W. Glover,et al.  Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems , 1973, Oper. Res..

[7]  I.G. Rosenberg,et al.  Minimization of pseudo-boolean functions by binary development , 1974, Discret. Math..

[8]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[9]  Bezalel Gavish,et al.  On obtaining the 'best' multipliers for a lagrangean relaxation for integer programming , 1978, Comput. Oper. Res..

[10]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[11]  M. Bazaraa,et al.  A survey of various tactics for generating Lagrangian multipliers in the context of Lagrangian duality , 1979 .

[12]  Daniel Granot,et al.  Covering Relaxation for Positive 0-1 Polynomial Programs , 1979 .

[13]  A. Griewank Generalized descent for global optimization , 1981 .

[14]  Laurence A. Wolsey,et al.  An elementary survey of general duality theory in mathematical programming , 1981, Math. Program..

[15]  Daniel Granot,et al.  An accelerated covering relaxation algorithm for solving 0–1 positive polynomial programs , 1982, Math. Program..

[16]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[17]  Tony J. Van Roy,et al.  Cross decomposition for mixed integer programming , 1983, Math. Program..

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[20]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[21]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[22]  Paul Molitor Layer assignment by simulated annealing , 1985 .

[23]  Emile H. L. Aarts,et al.  A new polynomial time cooling schedule , 1985 .

[24]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[25]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[26]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[27]  I. Grossmann,et al.  A mixed-integer nonlinear programming algorithm for process systems synthesis , 1986 .

[28]  H. Szu Fast simulated annealing , 1987 .

[29]  E. Panier,et al.  A superlinearly convergent feasible method for the solution of inequality constrained optimization problems , 1987 .

[30]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.

[31]  J. Bernasconi Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .

[32]  R. Ge,et al.  A class of filled functions for finding global minimizers of a function of several variables , 1987 .

[33]  A. Federgruen,et al.  Simulated annealing methods with general acceptance probabilities , 1987, Journal of Applied Probability.

[34]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[35]  Awi Federgruen,et al.  Ergodicity in Parametric Nonstationary Markov Chains: An Application to Simulated Annealing Methods , 1987, Oper. Res..

[36]  S. Rees,et al.  Criteria for an optimum simulated annealing schedule for problems of the travelling salesman type , 1987 .

[37]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[38]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[39]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[40]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[41]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[42]  Robert L. Smith,et al.  Pure adaptive search in monte carlo optimization , 1989, Math. Program..

[43]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[44]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .

[45]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[46]  L. Ingber Very fast simulated re-annealing , 1989 .

[47]  Truong Q. Nguyen,et al.  Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters , 1989, IEEE Trans. Acoust. Speech Signal Process..

[48]  M. Piccioni,et al.  Random tunneling by means of acceptance-rejection sampling for global optimization , 1989 .

[49]  S. Schäffler,et al.  A trajectory-following method for unconstrained optimization , 1990 .

[50]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[51]  Michael B. Steer,et al.  Extraction of the parameters of equivalent circuits of microwave transistors using tree annealing , 1990 .

[52]  Richard W. Eglese,et al.  Simulated annealing: A tool for operational research , 1990 .

[53]  M. Sarma On the convergence of the Baba and Dorea random optimization methods , 1990 .

[54]  Robert Schaback,et al.  An extended continuous Newton method , 1990 .

[55]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[56]  A. Tits,et al.  User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates , 1990 .

[57]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[58]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[59]  Mauro Piccioni,et al.  A combined multistart-annealing algorithm for continuous global optimization , 1991 .

[60]  Chris N. Potts,et al.  Single Machine Tardiness Sequencing Heuristics , 1991 .

[61]  Ronald G. Askin,et al.  A note on the effect of neighborhood structure in simulated annealing , 1991, Comput. Oper. Res..

[62]  Wesley E. Snyder,et al.  Optimization of functions with many minima , 1991, IEEE Trans. Syst. Man Cybern..

[63]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[64]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[65]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[66]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[67]  E. G. Sturua,et al.  A trajectory algorithm based on the gradient method I. The search on the quasioptimal trajectories , 1991, J. Glob. Optim..

[68]  Jiro Katto,et al.  Performance evaluation of subband coding and optimization of its filter coefficients , 1991, Other Conferences.

[69]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[70]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[71]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[72]  R. Luus,et al.  Importance of search-domain reduction in random optimization , 1992 .

[73]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[74]  M. A. Potapov,et al.  Numerical methods for global optimization , 1992 .

[75]  P. Toint,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[76]  Bruce E. Rosen,et al.  Genetic Algorithms and Very Fast Simulated Reannealing: A comparison , 1992 .

[77]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[78]  Shengwei Zhang,et al.  Lagrange programming neural networks , 1992 .

[79]  Antanas Zilinskas,et al.  A review of statistical models for global optimization , 1992, J. Glob. Optim..

[80]  Alan N. Willson,et al.  Lagrange multiplier approaches to the design of two-channel perfect-reconstruction linear-phase FIR filter banks , 1992, IEEE Trans. Signal Process..

[81]  Michael A. Shanblatt,et al.  A two-phase optimization neural network , 1992, IEEE Trans. Neural Networks.

[82]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[83]  Ramon E. Moore,et al.  Rigorous methods for global optimization , 1992 .

[84]  B. Goh,et al.  Trajectory-following algorithms for min-max optimization problems , 1992 .

[85]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[86]  L. Ingber Adaptive Simulated Annealing (ASA) , 1993 .

[87]  Andrzej Cichocki,et al.  Neural networks for optimization and signal processing , 1993 .

[88]  Elijah Polak,et al.  Multistart method with estimation scheme for global satisfycing problems , 1993, J. Glob. Optim..

[89]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[90]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[91]  Stefen Hui,et al.  On solving constrained optimization problems with neural networks: a penalty method approach , 1993, IEEE Trans. Neural Networks.

[92]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[93]  Bedri C. Cetin,et al.  Terminal repeller unconstrained subenergy tunneling (trust) for fast global optimization , 1993 .

[94]  Marc Schoenauer,et al.  Constrained GA Optimization , 1993, ICGA.

[95]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[96]  P. Siarry,et al.  Electronic component model minimization based on log simulated annealing , 1994 .

[97]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[98]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[99]  C. Storey,et al.  Modified controlled random search algorithms , 1994 .

[100]  William Baritompa,et al.  Accelerations for global optimization covering methods using second derivatives , 1994, J. Glob. Optim..

[101]  William Baritompa,et al.  Accelerations for a variety of global optimization methods , 1994, J. Glob. Optim..

[102]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[103]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[104]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[105]  Jan Paredis,et al.  Co-evolutionary Constraint Satisfaction , 1994, PPSN.

[106]  A. Trouvé Rough Large Deviation Estimates for the Optimal Convergence Speed Exponent of Generalized Simulated , 1994 .

[107]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[108]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[109]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[110]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[111]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[112]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[113]  Ross E. Swaney,et al.  Global optimization of nonconvex nonlinear programs using parallel branch and bound , 1995 .

[114]  Andrew E. W. Jones,et al.  An adaptive simulated annealing algorithm for global optimization over continuous variables , 1995, J. Glob. Optim..

[115]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[116]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[117]  S. Baluja An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics , 1995 .

[118]  Kihong Park,et al.  On the effectiveness of genetic search in combinatorial optimization , 1995, SAC '95.

[119]  Benjamin Belzer,et al.  Wavelet filter evaluation for image compression , 1995, IEEE Trans. Image Process..

[120]  Benjamin W. Wah,et al.  Genetics-Based Learning of New Heuristics: Rational Scheduling of Experiments and Generalization , 1995, IEEE Trans. Knowl. Data Eng..

[121]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[122]  Zbigniew Michalewicz,et al.  Evolutionary algorithms for constrained engineering problems , 1996, Computers & Industrial Engineering.

[123]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[124]  William E. Hart,et al.  A Theoretical Comparison of Evolutionary Algorithms and Simulated Annealing , 1995, Evolutionary Programming.

[125]  B. Wah,et al.  Handling inequality constraints in continuous nonlinear global optimization , 1996 .

[126]  Mengkang Peng,et al.  An Investigation into the Improvement of Local Minima of the Hopfield Network , 1996, Neural Networks.

[127]  A. Trouvé Cycle Decompositions and Simulated Annealing , 1996 .

[128]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[129]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[130]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[131]  R. Baker Kearfott,et al.  A Review of Techniques in the Verified Solution of Constrained Global Optimization Problems , 1996 .

[132]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[133]  Jorge Nocedal,et al.  Large-scale constrained optimization , 1996 .

[134]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[135]  Zbigniew Michalewicz,et al.  Evolutionary Computation at the Edge of Feasibility , 1996, PPSN.

[136]  Straub,et al.  Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[137]  Michael T. Orchard,et al.  Space-frequency quantization for wavelet image coding , 1997, IEEE Trans. Image Process..

[138]  Vladimír Kvasnička,et al.  A hybrid of simplex method and simulated annealing , 1997 .

[139]  M. Montaz Ali,et al.  A Numerical Comparison of Some Modified Controlled Random Search Algorithms , 1997, J. Glob. Optim..

[140]  U. Hansmann Simulated annealing with Tsallis weights a numerical comparison , 1997, cond-mat/9710190.

[141]  James C. Bean,et al.  A Genetic Algorithm for the Multiple-Choice Integer Program , 1997, Oper. Res..

[142]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[143]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[144]  B. Wah,et al.  Global Search Methods for Solving Nonlinear Optimization Problems , 1997 .

[145]  C. Storey,et al.  Aspiration Based Simulated Annealing Algorithm , 1997, J. Glob. Optim..

[146]  I. Balasingham,et al.  On the relevance of the regularity constraint in subband image coding , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[147]  Ilangko Balasingham,et al.  Survey of odd and even length filters in tree-structured filter banks for subband image compression , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[148]  Hyun Myung,et al.  Evolutionary programming techniques for constrained optimization problems , 1997, IEEE Trans. Evol. Comput..

[149]  Sumit Chawla,et al.  Image coding using optimized significance tree quantization , 1997, Proceedings DCC '97. Data Compression Conference.

[150]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[151]  Pierre Courrieu,et al.  The Hyperbell Algorithm for Global Optimization: A Random Walk Using Cauchy Densities , 1997, J. Glob. Optim..

[152]  V. Ravi,et al.  Nonequilibrium simulated-annealing algorithm applied to reliability optimization of complex systems , 1997 .

[153]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[154]  Graham R. Wood,et al.  Hesitant adaptive search for global optimisation , 1998, Math. Program..

[155]  Shumeet Baluja,et al.  Fast Probabilistic Modeling for Combinatorial Optimization , 1998, AAAI/IAAI.

[156]  Tao Wang,et al.  Constrained optimization of filter banks in subband image coding , 1998, 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175).

[157]  R. Baker Kearfott,et al.  On proving existence of feasible points in equality constrained optimization problems , 1998, Math. Program..

[158]  Zelda B. Zabinsky,et al.  Stochastic Methods for Practical Global Optimization , 1998, J. Glob. Optim..

[159]  Vassilios Petridis,et al.  Varying fitness functions in genetic algorithm constrained optimization: the cutting stock and unit commitment problems , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[160]  Benjamin W. Wah,et al.  A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems , 1996, J. Glob. Optim..

[161]  Andrew W. Moore,et al.  Learning Evaluation Functions for Global Optimization and Boolean Satisfiability , 1998, AAAI/IAAI.

[162]  Peter Spellucci,et al.  An SQP method for general nonlinear programs using only equality constrained subproblems , 1998, Math. Program..

[163]  Aria Nosratinia,et al.  Wavelet-Based Image Coding: An Overview , 1999 .

[164]  Zhe Wu,et al.  Solving hard satisfiability problems: a unified algorithm based on discrete Lagrange multipliers , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[165]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[166]  Tao Wang,et al.  Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization , 1999, CP.

[167]  Tao Wang,et al.  Constrained simulated annealing with applications in nonlinear continuous constrained global optimization , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[168]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[169]  Zhe Wu,et al.  The Theory of Discrete Lagrange Multipliers for Nonlinear Discrete Optimization , 1999, CP.

[170]  Vladimir Pavlovic,et al.  An integrated framework for adaptive subband image coding , 1999, IEEE Trans. Signal Process..

[171]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[172]  Tao Wang,et al.  Efficient and Adaptive Lagrange-Multiplier Methods for Nonlinear Continuous Global Optimization , 1999, J. Glob. Optim..

[173]  Zhe Wu,et al.  Trap Escaping Strategies in Discrete Lagrangian Methods for Solving Hard Satisfiability and Maximum Satisfiability Problems , 1999, AAAI/IAAI.

[174]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[175]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[176]  Zhe Wu,et al.  Improving the performance of weighted Lagrange-multiplier methods for nonlinear constrained optimization , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[177]  Tao Wang,et al.  Tuning Strategies in Constrained Simulated Annealing for Nonlinear Global Optimization , 2000, Int. J. Artif. Intell. Tools.

[178]  Yixin Chen,et al.  Optimal Anytime Constrained Simulated Annealing for Constrained Global Optimization , 2000, CP.

[179]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..