Reducing Belief Revision to Circumscription (and Vice Versa)

Nonmonotonic formalisms and belief revision operators have been introduced as useful tools to describe and reason about evolving scenarios. Both approaches have been proven effective in a number of different situations. However, little is known about their relationship. Previous work by Winslett has shown some correlations between a specific operator and circumscription. In this paper we greatly extend Winslett's work by establishing new relations between circumscription and a large number of belief revision operators. This highlights similarities and differences between these formalisms. Furthermore, these connections provide us with the possibility of importing results in one field into the other one.

[1]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[2]  G. Gottlob,et al.  Propositional circumscription and extended closed-world reasoning are ΠP2-complete , 1993 .

[3]  Marco Schaerf,et al.  Relating Belief Revision and Circumscription , 1995, IJCAI.

[4]  Kurt Konolige,et al.  Eliminating the Fixed Predicates from a Circumscription , 1989, Artif. Intell..

[5]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[6]  Marianne Winslett Sometimes Updates Are Circumscription , 1989, IJCAI.

[7]  Marco Cadoli,et al.  The Complexity of Model Checking for Circumscriptive Formulae , 1992, Inf. Process. Lett..

[8]  Francesco M. Donini,et al.  The size of a revised knowledge base , 1995, PODS '95.

[9]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[10]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[11]  Georg Gottlob,et al.  On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals , 1992, Artif. Intell..

[12]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[13]  Kenneth D. Forbus Introducing Actions into Qualitative Simulation , 1989, IJCAI.

[14]  Georg Gottlob,et al.  Complexity of Propositional Knowledge Base Revision , 1992, CNKBS.

[15]  Tomasz Imielinski,et al.  Results on Translating Defaults to Circumscription , 1985, IJCAI.

[16]  Hirofumi Katsuno,et al.  A Unified View of Propositional Knowledge Base Updates , 1989, IJCAI.

[17]  Ronald Fagin,et al.  On the semantics of updates in databases , 1983, PODS.

[18]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[19]  Maurizio Lenzerini,et al.  The Complexity of Propositional Closed World Reasoning and Circumscription , 1994, J. Comput. Syst. Sci..

[20]  Alexander Borgida,et al.  Language features for flexible handling of exceptions in information systems , 1985, TODS.

[21]  Matthew L. Ginsberg A Circumscriptive Theorem Prover , 1989, Artif. Intell..

[22]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[23]  Ken Satoh Nonmonotonic Reasoning by Minimal Belief Revision , 1988, FGCS.

[24]  Teodor C. Przymusinski An Algorithm to Compute Circumscription , 1989, Artif. Intell..

[25]  Francesco M. Donini,et al.  Feasibility and Unfeasibility of Off-Line Processing , 1996, ISTCS.

[26]  Georg Gottlob,et al.  An Efficient Method for Eliminating Varying Predicates from a Circumscription , 1992, Artif. Intell..

[27]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[28]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[29]  Marianne Winslett,et al.  Updating logical databases , 1990, Cambridge tracts in theoretical computer science.

[30]  Marco Schaerf,et al.  The Complexity of Model Checking for Belief Revision and Update , 1996, AAAI/IAAI, Vol. 1.

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  Francesco M. Donini,et al.  Comparing Space Efficiency of Propositional Knowledge Representation Formalisms , 1996, KR.

[33]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[34]  Francesco M. Donini,et al.  On Compact Representations of Propositional Circumscription , 1995, STACS.

[35]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[36]  Anil Nerode,et al.  Computing Circumscriptive Databases: I. Theory and Algorithms , 1995, Inf. Comput..

[37]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.