Hybrid Predictive Control: Mono-objective and Multi-objective Design

The design of hybrid predictive control (HPC), which is based on both piecewise affine (PWA) models and hybrid fuzzy models, is described. For solving the nonlinear optimization problems resulting from these controllers, evolutionary algorithms are proposed, thereby demonstrating a reduction of computation effort in comparison with classical methods. Moreover, this chapter presents a new approach for dealing with HPC formulations using evolutionary multi-objective optimization. Different criteria are proposed to obtain an optimal control action from the Pareto front.

[1]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[2]  Igor Skrjanc,et al.  Hybrid fuzzy model-based predictive control of temperature in a batch reactor , 2007, Comput. Chem. Eng..

[3]  Kay Chen Tan,et al.  A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design , 2010, Eur. J. Oper. Res..

[4]  J. Maciejowski,et al.  Designing model predictive controllers with prioritised constraints and objectives , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[5]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[6]  Yacov Y. Haimes,et al.  Hierarchical Multiobjective Analysis of Large-Scale Systems , 1990 .

[7]  Alberto Bemporad,et al.  Multiobjective model predictive control , 2009, Autom..

[8]  Yang Yang,et al.  A distributed cooperative coevolutionary algorithm for multiobjective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[9]  Igor Skrjanc,et al.  Hybrid Fuzzy Modelling for Model Predictive Control , 2007, J. Intell. Robotic Syst..

[10]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[11]  Carlos A. Coello Coello,et al.  A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems , 2010, IEEE Transactions on Evolutionary Computation.

[12]  Darine Zambrano,et al.  Application of MPC with multiple objective for a solar refrigeration plant , 2002, Proceedings of the International Conference on Control Applications.

[13]  Igor Skrjanc,et al.  Fuzzy-model-based hybrid predictive control. , 2009, ISA transactions.

[14]  B. Zupancic,et al.  Model predictive control systems with discrete inputs , 2004, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521).

[15]  C. Bordons,et al.  Comparison of different predictive controllers with multi-objective optimization. Application to an olive oil mill , 2002, Proceedings of the International Conference on Control Applications.

[16]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[17]  Thomas Bäck,et al.  An Overview of Parameter Control Methods by Self-Adaption in Evolutionary Algorithms , 1998, Fundam. Informaticae.

[18]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[19]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using a cultural algorithm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[20]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[21]  Steven Orla Kimbrough,et al.  On a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for constrained optimization: Distance tracing and no free lunch , 2008, Eur. J. Oper. Res..

[22]  Haralambos Sarimveis,et al.  Fuzzy model predictive control of non-linear processes using genetic algorithms , 2003, Fuzzy Sets Syst..

[23]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[24]  Xiaohua Liu,et al.  Solving multi objective optimization problems using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[25]  M. Morari,et al.  Predictive Control of Constrained Hybrid Systems , 2000 .

[26]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[27]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[28]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[29]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[30]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[31]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[32]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.