Synthesis and Structure of Oxygen Deficient Lead-Technetium Pyrochlore, the First Example of a Valence V Technetium Oxide

The structure of lead-technetium pyrochlore has been refined in space group F d 3 ¯ m with a = 10.36584(2) Å using a combination of synchrotron X-ray and neutron powder diffraction data and confirmed via Electron Diffraction. The oxide is found to be oxygen deficient with a stoichiometry of Pb2Tc2O7-d. Displacive disorder of the Pb cations is evident from the refinements, as has been observed in Bi2Tc2O7-d. X-ray absorption spectroscopic measurements at the Tc K-edge demonstrate the valence of the Tc is greater than 4.0 as anticipated from the refined oxygen stoichiometry. Raman spectroscopy confirms the presence of disorder leading us to conclude that this pyrochlore is the first example of a valence V technetium oxide.

[1]  H. Brand,et al.  Structures and Phase Transitions in Pertechnetates. , 2019, Inorganic chemistry.

[2]  M. Avdeev,et al.  ECHIDNA: a decade of high-resolution neutron powder diffraction at OPAL , 2018, Journal of Applied Crystallography.

[3]  R. Alberto,et al.  The Nature of the Technetium Species Formed During the Oxidation of Technetium Dioxide with Oxygen and Water , 2018 .

[4]  Zhaoming Zhang,et al.  Thermal Expansion Behavior in TcO2. Toward Breaking the Tc-Tc Bond. , 2017, Inorganic chemistry.

[5]  Zhaoming Zhang,et al.  An unconventional method for measuring the Tc L3-edge of technetium compounds. , 2014, Journal of synchrotron radiation.

[6]  A. Georges,et al.  Publisher’s Note: Origin of the High Néel Temperature inSrTcO3[Phys. Rev. Lett.108, 197202 (2012)] , 2012 .

[7]  Zhaoming Zhang,et al.  Structure and cation ordering in spinel-type TcCo2O4. An example of a trivalent technetium oxide. , 2011, Dalton transactions.

[8]  M. Avdeev,et al.  Structural phase transitions and magnetic order in SrTcO3. , 2011, Dalton transactions.

[9]  Thomas Hartmann,et al.  Structure studies on lanthanide technetium pyrochlores as prospective host phases to immobilize 99technetium and fission lanthanides from effluents of reprocessed used nuclear fuels , 2011 .

[10]  David J. Singh,et al.  High temperature magnetic ordering in the 4d perovskite SrTcO3. , 2011, Physical review letters.

[11]  David J. Singh,et al.  Antiferromagnetism in a technetium oxide. Structure of CaTcO3. , 2011, Journal of the American Chemical Society.

[12]  Eunja Kim,et al.  Structural and electronic trends in rare-earth technetate pyrochlores. , 2010, Dalton transactions.

[13]  A. Cheetham,et al.  Preparation and crystal structures of bismuth technetates: a new metal oxide system. , 2008, Inorganic chemistry.

[14]  D. Tanner,et al.  Raman study of the phonon modes in bismuth pyrochlores , 2008 .

[15]  P. Battle,et al.  XAS study of Ru doped n = 1, 2 Ruddlesden–Popper manganites , 2007 .

[16]  R. Withers,et al.  Real-space refinement of single-crystal electron diffuse scattering and its application to Bi2Ru2O7−δ , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  U. Waghmare,et al.  Structural studies of TcO2 by neutron powder diffraction and first-principles calculations. , 2007, Journal of the American Chemical Society.

[18]  P. A. Lay,et al.  Status of the X‐Ray Absorption Spectroscopy (XAS) Beamline at the Australian Synchrotron , 2007 .

[19]  K. Wallwork,et al.  The High Resolution Powder Diffraction Beamline for the Australian Synchrotron , 2007 .

[20]  M. Hagen,et al.  Echidna—the new high-resolution powder diffractometer being built at OPAL , 2006 .

[21]  Yun Liu,et al.  Local crystal chemistry, structured diffuse scattering and the dielectric properties of (Bi1−xYx)2(MIIINbV)O7 (M=Fe3+, In3+) Bi-pyrochlores , 2006 .

[22]  I. Levin,et al.  An Unexpected Crystal-Chemical Principle for the Pyrochlore Structure , 2005 .

[23]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[24]  N. Hess,et al.  Bond-valence sums for Tc–O systems from EXAFS data , 2005 .

[25]  J. M. Perez-Mato,et al.  Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .

[26]  R. Cava,et al.  Static disorder from lone-pair electrons in pyrochlores , 2002 .

[27]  O. Nielsen,et al.  The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling , 2001 .

[28]  R. Withers,et al.  Annular dynamical disorder of the rare earth ions in a La2Zr2O7 pyrochlore via single crystal synchrotron X-ray diffraction , 2001 .

[29]  R. Schlögl,et al.  Time-resolved XAS investigation of the reduction/oxidation of MoO3-x , 2000 .

[30]  O. Lebedev,et al.  Synthesis and structural study of Pb2Re2O7-x pyrochlores , 1998 .

[31]  T. Vogt,et al.  Structural and Bonding Trends in Ruthenium Pyrochlores , 1996 .

[32]  Christopher C. Cummins,et al.  Dinitrogen cleavage by three-coordinate molybdenum(III) complexes: Mechanistic and structural data , 1996 .

[33]  B. Kennedy Oxygen Vacancies in Pyrochlore Oxides: Powder Neutron Diffraction Study of Pb2Ir2O6.5and Bi2Ir2O7−y , 1996 .

[34]  S. Jurisson,et al.  Coordination compounds in nuclear medicine , 1993 .

[35]  B. Kennedy,et al.  Bismuth Ruthenium Oxides. Neutron Diffraction and Photoelectron Spectroscopic Study of Bi2Ru2O7 and Bi3Ru3O11 , 1993 .

[36]  A. Conversi Uptake and loss of technetium-95m in the crab Pachygrapsus marmoratus , 1985 .

[37]  M. E. Leonowicz,et al.  Neutron diffraction investigation of ordered oxygen vacancies in the defect pyrochlores, Pb2Ru2O6.5 and PbT1Nb2O6.5 , 1984 .

[38]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[39]  R. Mccauley Infrared-absorption characteristics of the pyrochlore structure* , 1973 .

[40]  Rustum Roy,et al.  Crystal chemistry of some technetium-containing oxides , 1964 .

[41]  R. Loudon,et al.  The Raman effect in crystals , 1964 .