RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C

[1]  Keywan Riahi,et al.  Land-based mitigation in climate stabilization , 2012 .

[2]  M. Kainuma,et al.  An emission pathway for stabilization at 6 Wm−2 radiative forcing , 2011 .

[3]  Keywan Riahi,et al.  Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period , 2011 .

[4]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[5]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[6]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[7]  Keywan Riahi,et al.  The relationship between short-term emissions and long-term concentration targets , 2011 .

[8]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[9]  Michael Obersteiner,et al.  Competition for land , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Michel G.J. den Elzen,et al.  Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100 , 2010 .

[11]  K. Lindgren,et al.  The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) , 2010 .

[12]  Socrates Kypreos,et al.  The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs , 2010 .

[13]  Detlef P. van Vuuren,et al.  Bio-Energy Use and Low Stabilization Scenarios , 2010 .

[14]  Gunnar Luderer,et al.  Managing the Low-Carbon Transition - From Model Results to Policies , 2010 .

[15]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[16]  Keywan Riahi,et al.  Mitigation implications of midcentury targets that preserve long-term climate policy options , 2009, Proceedings of the National Academy of Sciences.

[17]  Richard S. J. Tol,et al.  Counting only the hits? The risk of underestimating the costs of stringent climate policy , 2010 .

[18]  J. Edmonds,et al.  2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century , 2009 .

[19]  L. Clarke,et al.  International climate policy architectures: Overview of the EMF 22 International Scenarios , 2009 .

[20]  Simon Buckle,et al.  Mitigation of climate change , 2009, The Daunting Climate Change.

[21]  Bas Eickhout,et al.  Climate benefits of changing diet , 2009 .

[22]  Detlef P. van Vuuren,et al.  Contribution of N2O to the greenhouse gas balance of first‐generation biofuels , 2009 .

[23]  T. Masui,et al.  Variation factors of global cropland requirements from the IPCC special report on emissions scenarios (SRES) , 2009 .

[24]  Jean-Pascal van Ypersele de Strihou,et al.  Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies , 2008 .

[25]  Keywan Riahi,et al.  IMAGE and MESSAGE Scenarios Limiting GHG Concentration to Low Levels , 2008 .

[26]  Tom M. L. Wigley,et al.  Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0 , 2008 .

[27]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[28]  D. V. van Vuuren,et al.  Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs , 2007, Proceedings of the National Academy of Sciences.

[29]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[30]  Keith A. Smith,et al.  N 2 O release from agro-biofuel production negates global warming reduction by replacing fossil fuels , 2007 .

[31]  Michel G.J. den Elzen,et al.  Multi-gas emission envelopes to meet greenhouse gas concentration targets: Costs versus certainty of limiting temperature increase , 2007 .

[32]  Michel G.J. den Elzen,et al.  Long-term reduction potential of non-CO2 greenhouse gases , 2007 .

[33]  M. Saier,et al.  Climate Change, 2007 , 2007 .

[34]  Bas Eickhout,et al.  Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs , 2007 .

[35]  P. Lucas,et al.  Downscaling drivers of global environmental change Enabling use of global SRES scenarios at the national and grid levels , 2007 .

[36]  N. Nakicenovic,et al.  Issues related to mitigation in the long-term context , 2007 .

[37]  B. D. Vries,et al.  The potential role of hydrogen in energy systems with and without climate policy , 2007 .

[38]  Bas Eickhout,et al.  Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing - Exploring Costs and Benefits Within an Integrated Assessment Framework , 2006 .

[39]  John P. Weyant,et al.  Overview of EMF-21: Multigas Mitigation and Climate Policy , 2006 .

[40]  Michel G.J. den Elzen,et al.  Multi-gas Emissions Pathways to Meet Climate Targets , 2006 .

[41]  Toshihiko Masui,et al.  Research, part of a Special Feature on Scenarios of global ecosystem services Changes in Nature's Balance Sheet: Model-based Estimates of Future Worldwide Ecosystem Services , 2005 .

[42]  Kristian Lindgren,et al.  Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere , 2006 .

[43]  Jonathan Lermit,et al.  Bio-energy with carbon storage (BECS) : A sequential decision approach to the threat of abrupt climate change , 2005 .

[44]  Alexei G. Sankovski,et al.  Geographical Distributions of Temperature Change for Scenarios of Greenhouse Gas and Sulfur Dioxide Emissions , 2000 .

[45]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .