Synthetic ion channels and pores (2004-2005).

This critical review covers synthetic ion channels and pores created between January 2004 and December 2005 comprehensively. The discussion of a rich collection of structural motifs may particularly appeal to organic, biological, supramolecular and polymer chemists. Functions addressed include ion selectivity and molecular recognition, as well as responsiveness to light, heat, voltage and membrane composition. The practical applications involved concern certain topics in medicinal chemistry (antibiotics, drug delivery), catalysis and sensing. An introduction to principles and methods is provided for the non-specialist; some new sources of inspiration from fields beyond chemistry are highlighted.

[1]  Stefan Matile,et al.  Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores. , 2005, Accounts of chemical research.

[2]  S. Matile,et al.  Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes. , 2001, Journal of the American Chemical Society.

[3]  P. Pohl,et al.  Ionophoric activity of pluronic block copolymers. , 2004, Biochemistry.

[4]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[5]  Svetlana Litvinchuk,et al.  Sugar sensing with synthetic multifunctional pores. , 2005, Journal of the American Chemical Society.

[6]  S. Matile,et al.  Contributions of Lipid Bilayer Hosts to Structure and Activity of Multifunctional Supramolecular Guests , 2005, Chemistry & biodiversity.

[7]  N. Madhavan,et al.  A highly active anion-selective aminocyclodextrin ion channel. , 2005, Angewandte Chemie.

[8]  R. Salzer,et al.  Photoresponsive upper-rim azobenzene substituted calix[4]resorcinarenes , 2005 .

[9]  R. J. Doerksen,et al.  Nontoxic membrane-active antimicrobial arylamide oligomers. , 2004, Angewandte Chemie.

[10]  W. Matthew Leevy,et al.  Structure and medium effects on hydraphile synthetic ion channel toxicity to the bacterium E. coli , 2005 .

[11]  J. Lehn,et al.  Selective complexation and transport of europium ions at the interface of vesicles. , 2004, Chemistry.

[12]  Thomas Hennig,et al.  Photomodulation of ionic current through hemithioindigo-modified gramicidin channels. , 2004, Organic & biomolecular chemistry.

[13]  P. Savage,et al.  Origins of cell selectivity of cationic steroid antibiotics. , 2004, Journal of the American Chemical Society.

[14]  G. Tew,et al.  Simple oligomers as antimicrobial peptide mimics , 2005, Journal of Industrial Microbiology and Biotechnology.

[15]  I. Izzo,et al.  Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores. , 2005, Chemical communications.

[16]  S. Matile,et al.  Synthetic ion channels with rigid-rod pi-stack architecture that open in response to charge-transfer complex formation. , 2005, Journal of the American Chemical Society.

[17]  Wen-Hua Chen,et al.  Poly(choloyl)-based amphiphiles as pore-forming agents: transport-active monomers by design. , 2005, Journal of the American Chemical Society.

[18]  Stefan Matile,et al.  Recent synthetic ion channels and pores , 2004 .

[19]  S. Gellman,et al.  Use of parallel synthesis to probe structure-activity relationships among 12-helical beta-peptides: evidence of a limit on antimicrobial activity. , 2005, Journal of the American Chemical Society.

[20]  D. Reinhoudt,et al.  Formation of a hydrogen-bonded receptor assembly in niosomal membranes. , 2004, Journal of the American Chemical Society.

[21]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[22]  G. Gokel,et al.  The C- and N-Terminal Residues of Synthetic Heptapeptide Ion Channels Influence Transport Efficacy Through Phospholipid Bilayers. , 2005, New journal of chemistry = Nouveau journal de chimie.

[23]  Bradley D. Smith,et al.  Steroid-derived phospholipid scramblases induce exposure of phosphatidylserine on the surface of red blood cells. , 2005, Bioorganic & medicinal chemistry.

[24]  W. M. Leevy,et al.  Correlation of bilayer membrane cation transport and biological activity in alkyl-substituted lariat ethers. , 2005, Organic & biomolecular chemistry.

[25]  D. Koh,et al.  Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. , 2004, Journal of the American Chemical Society.

[26]  S. D. Hudson,et al.  Self-assembly of amphiphilic dendritic dipeptides into helical pores , 2004, Nature.

[27]  W. M. Leevy,et al.  Synthetic ion channel activity documented by electrophysiological methods in living cells. , 2004, Journal of the American Chemical Society.

[28]  S. Regen,et al.  Molecular umbrella-assisted transport of an oligonucleotide across cholesterol-rich phospholipid bilayers. , 2005, Journal of the American Chemical Society.

[29]  Akio Nakano,et al.  Synthesis of a membrane-insertable, sodium cation conducting channel : kinetic analysis by dynamic 23Na NMR , 1990 .

[30]  I. Izzo,et al.  Steroid-based head-to-tail amphiphiles as effective iono- and protonophores , 2005 .

[31]  Vladimir Torchilin,et al.  Structure-activity relationships, kinetics, selectivity, and mechanistic studies of synthetic hydraphile channels in bacterial and mammalian cells. , 2005, Organic & biomolecular chemistry.

[32]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[33]  H. Bayley,et al.  Stochastic Sensing of TNT with a Genetically Engineered Pore , 2005, Chembiochem : a European journal of chemical biology.

[34]  W. M. Leevy,et al.  The influence of aromatic residues in hydraphile spacer units: assay by ion selective electrode methods and in bacteria. , 2005, Bioorganic & medicinal chemistry.

[35]  S. Matile,et al.  Synthetic multifunctional pores: lessons from rigid-rod β-barrels , 2003 .

[36]  Stefan Matile,et al.  The depth of molecular recognition: voltage-sensitive blockage of synthetic multifunctional pores with refined architecture. , 2005, Chemical communications.

[37]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[38]  Svetlana Litvinchuk,et al.  AFM snapshots of synthetic multifunctional pores with polyacetylene blockers: pseudorotaxanes and template effects. , 2005, Angewandte Chemie.

[39]  S. Matile,et al.  Ligand-gated synthetic ion channels. , 2005, Chemistry.

[40]  M. Colombini,et al.  Sphingosine Forms Channels in Membranes That Differ Greatly from Those Formed by Ceramide , 2005, Journal of bioenergetics and biomembranes.

[41]  S. Gellman,et al.  Unexpected Relationships between Structure and Function in α,β-Peptides: Antimicrobial Foldamers with Heterogeneous Backbones , 2004 .

[42]  Y. Kobuke,et al.  Supramolecular ion channels from a transmembrane bischolic acid derivative showing two discrete conductances. , 2004, Organic & biomolecular chemistry.

[43]  Gunnar von Heijne,et al.  Transmembrane helices before, during, and after insertion. , 2005, Current opinion in structural biology.

[44]  Bin Yang,et al.  New nanoscale pulsatile drug delivery system , 2005 .

[45]  M. Sokabe,et al.  Totally Synthetic Voltage Dependent Ion Channel , 1995 .

[46]  S. Bezrukov,et al.  Voltage-dependent ion channel formation by rigid rod-shaped polyols in planar lipid bilayers. , 1998, Bioorganic & medicinal chemistry letters.

[47]  Mainak Majumder,et al.  Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. , 2005, Journal of the American Chemical Society.

[48]  S. Gellman,et al.  Antimicrobial 14-Helical β-Peptides: Potent Bilayer Disrupting Agents† , 2004 .

[49]  W. DeGrado,et al.  Amphiphilic polymethacrylate derivatives as antimicrobial agents. , 2005, Journal of the American Chemical Society.

[50]  R. Benz,et al.  Lipid II-Mediated Pore Formation by the Peptide Antibiotic Nisin: a Black Lipid Membrane Study , 2004, Journal of bacteriology.

[51]  S. Matile,et al.  Thermodynamic and kinetic stability of synthetic multifunctional rigid-rod beta-barrel pores: evidence for supramolecular catalysis. , 2004, Journal of the American Chemical Society.

[52]  Stefan Matile,et al.  Synthetic multifunctional pores that open and close in response to chemical stimulation. , 2005, Bioorganic & medicinal chemistry.

[53]  S. Matile,et al.  Blocker efflux through blocked pores , 2004 .

[54]  T. Aida,et al.  Dendritic Physical Gel: Hierarchical Self-Organization of a Peptide-Core Dendrimer to Form a Micrometer-Scale Fibrous Assembly , 2000 .

[55]  Takumi Yamaguchi,et al.  A 3.5-nm coordination nanotube. , 2004, Journal of the American Chemical Society.

[56]  Y. Kobuke,et al.  Artificial ion channels showing rectified current behavior. , 2001, Journal of the American Chemical Society.

[57]  Michael L. Klein,et al.  Membrane bound hydraphiles facilitate cation translocation , 2004 .

[58]  R. Bisby,et al.  Wavelength-programmed solute release from photosensitive liposomes. , 2000, Biochemical and biophysical research communications.

[59]  W. M. Leevy,et al.  Functional, synthetic organic chemical models of cellular ion channels. , 2004, Bioorganic & medicinal chemistry.

[60]  R. J. Doerksen,et al.  Synthesis of urea oligomers and their antibacterial activity. , 2005, Chemical communications.

[61]  J. Svendsen,et al.  Bulky nonproteinogenic amino acids permit the design of very small and effective cationic antibacterial peptides. , 2004, Journal of medicinal chemistry.

[62]  P. Savage,et al.  Synthesis and characterization of peptide-cationic steroid antibiotic conjugates. , 2004, Organic letters.

[63]  S. Matile,et al.  Transmembrane B‐DNA , 2000, Chembiochem : a European journal of chemical biology.

[64]  S. Matile,et al.  Recognition of polarized lipid bilayers by p-oligophenyl ion channels: from push-pull rods to push-pull barrels. , 2002, Journal of the American Chemical Society.

[65]  Y. Kobuke,et al.  Supramolecular ion channel containing trans-azobenzene for photocontrol of ionic fluxes , 2000 .

[66]  P. Van Hove,et al.  Design, synthesis, and characterization of peptide nanostructures having ion channel activity. , 2004, Bioorganic & medicinal chemistry.

[67]  C. van Nostrum,et al.  Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[68]  S. Matile,et al.  The determination of the ion selectivity of synthetic ion channels and pores in vesicles , 2006 .

[69]  I. Tabushi,et al.  A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound , 1982 .

[70]  P. Guégan,et al.  Ionic channel behavior of modified cyclodextrins inserted in lipid membranes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[71]  G. Gokel,et al.  Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin. , 2005, Bioorganic & medicinal chemistry.

[72]  Wen-Hua Chen,et al.  Tetracyanoresorcin[4]arene ion channel shows pH dependent conductivity change. , 2004, Chemical communications.

[73]  G. Tew,et al.  Nonhemolytic abiogenic polymers as antimicrobial peptide mimics , 2004 .

[74]  Shiroh Futaki,et al.  Anionic fullerenes, calixarenes, coronenes, and pyrenes as activators of oligo/polyarginines in model membranes and live cells. , 2005, Journal of the American Chemical Society.

[75]  Robert M. Stroud,et al.  Mechanism of Ammonia Transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å , 2004, Science.

[76]  Jong-Hyun Ahn,et al.  Supramolecular barrels from amphiphilic rigid–flexible macrocycles , 2005, Nature materials.

[77]  Svetlana Litvinchuk,et al.  Blockage of Rigid-rod β-Barrel Pores with Rigid-rod α-Helix Mimics* , 2005 .

[78]  Jeffery T. Davis G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. , 2004, Angewandte Chemie.

[79]  Wen-Hua Chen,et al.  Thermally gated liposomes. , 2005, Journal of the American Chemical Society.

[80]  David H. Thompson,et al.  Phototriggering of liposomal drug delivery systems. , 2001, Advanced drug delivery reviews.

[81]  B. de Kruijff,et al.  Assembly and stability of nisin-lipid II pores. , 2004, Biochemistry.

[82]  D. Lacy,et al.  A Phenylalanine Clamp Catalyzes Protein Translocation Through the Anthrax Toxin Pore , 2005, Science.

[83]  W. M. Leevy,et al.  NMR and ion selective electrode studies of hydraphile channels correlate with biological activity in E. coli and B. subtilis. , 2005, Chemical communications.

[84]  S. Matile,et al.  Outer surface modification of synthetic multifunctional pores. , 2004, Bioorganic & medicinal chemistry.

[85]  Stefan Matile,et al.  On selectivity and sensitivity of synthetic multifunctional pores as enzyme sensors: discrimination between ATP and ADP and comparison with biological pores. , 2004, Biopolymers.

[86]  Brent D. Davis,et al.  Proapoptotic triterpene electrophiles (avicins) form channels in membranes: cholesterol dependence. , 2005, Biophysical journal.

[87]  G. Gokel,et al.  Anion Transport in Liposomes Responds to Variations in the Anchor Chains and the Fourth Amino Acid of Heptapeptide Ion Channels. , 2005, New journal of chemistry = Nouveau journal de chimie.

[88]  M. F. Ilker,et al.  Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: Study of the lipid membrane disruption activities , 2004 .

[89]  D. M. Lynn,et al.  Biocidal activity of polystyrenes that are cationic by virtue of protonation. , 2004 .

[90]  R. Salzer,et al.  Potential analytical applications of gated artificial ion channels , 2005, Analytical and bioanalytical chemistry.

[91]  K. Kono,et al.  Temperature sensitization of liposomes by use of N-isopropylacrylamide copolymers with varying transition endotherms. , 2004, Bioconjugate chemistry.

[92]  Stefan Matile,et al.  Synthetic multifunctional pores with external and internal active sites for ligand gating and noncompetitive blockage. , 2004, Journal of the American Chemical Society.

[93]  G. Tew,et al.  Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. , 2004, Journal of the American Chemical Society.

[94]  Michael L Klein,et al.  Understanding nature's design for a nanosyringe. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[95]  G. Gokel,et al.  Chloride complexation by heptapeptides: influence of C- and N-terminal sidechains and counterion. , 2004, Chemical communications.

[96]  Bradley D. Smith,et al.  A fluorescent assay for chloride transport; identification of a synthetic anionophore with improved activity. , 2005, Chemical communications.

[97]  S. Mallik,et al.  Design of photocleavable lipids and their application in liposomal "uncorking". , 2005, Chemical communications.

[98]  B. Herold,et al.  Persulfated molecular umbrellas as anti-HIV and anti-HSV agents. , 2004, Journal of the American Chemical Society.

[99]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[100]  Meital Reches,et al.  Peptide nanotube-modified electrodes for enzyme-biosensor applications. , 2005, Analytical chemistry.

[101]  C. Tribet,et al.  Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[102]  B. Tashmukhamedov,et al.  Characteristics of Single Ionic Channels Induced by Sulfonic Acid Derivatives of Dibenzo-18-Crown-6 in Bilayers , 2004 .

[103]  X. Zhou,et al.  A VOLTAGE-GATED ION CHANNEL BASED ON A BIS-MACROCYCLIC BOLAAMPHIPHILE , 1998 .

[104]  S. Matile,et al.  Voltage-dependent formation of anion channels by synthetic rigid-rod push-pull beta-barrels. , 2003, Chemistry.

[105]  S. Howorka,et al.  Protein components for nanodevices. , 2005, Current opinion in chemical biology.

[106]  R. Duncan,et al.  Synthesis and endosomolytic properties of poly(amidoamine) block copolymers. , 2004, Macromolecular bioscience.

[107]  Bernd Ensing,et al.  Structure and dynamics of model pore insertion into a membrane. , 2005, Biophysical journal.

[108]  G. Gokel,et al.  Evidence for dimer formation by an amphiphilic heptapeptide that mediates chloride and carboxyfluorescein release from liposomes. , 2005, Organic & biomolecular chemistry.

[109]  A. Mueller,et al.  Photoinitiated destabilization of sterically stabilized liposomes. , 2001, Biochimica et biophysica acta.