Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition

Accurate sound rendering can add significant realism to complement visual display in interactive applications, as well as facilitate acoustic predictions for many engineering applications, like accurate acoustic analysis for architectural design (Monks et al., 2000). Numerical simulation can provide this realism most naturally by modeling the underlying physics of wave propagation. However, wave simulation has traditionally posed a tough computational challenge. In this paper, we present a technique which relies on an adaptive rectangular decomposition of 3D scenes to enable efficient and accurate simulation of sound propagation in complex virtual environments. It exploits the known analytical solution of the wave equation in rectangular domains, and utilizes an efficient implementation of the discrete cosine transform on graphics processors (GPU) to achieve at least a 100-fold performance gain compared to a standard finite-difference time-domain (FDTD) implementation with comparable accuracy, while also being 10-fold more memory efficient. Consequently, we are able to perform accurate numerical acoustic simulation on large, complex scenes in the kilohertz range. To the best of our knowledge, it was not previously possible to perform such simulations on a desktop computer. Our work thus enables acoustic analysis on large scenes and auditory display for complex virtual environments on commodity hardware.

[1]  Matti Karjalainen,et al.  Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling , 2004, EURASIP J. Adv. Signal Process..

[2]  Thomas A. Funkhouser,et al.  Modeling acoustics in virtual environments using the uniform theory of diffraction , 2001, SIGGRAPH.

[3]  H. Sabine Room Acoustics , 1953, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[4]  George Drettakis,et al.  Fast modal sounds with scalable frequency-domain synthesis , 2008, ACM Trans. Graph..

[5]  Naga K. Govindaraju,et al.  High performance discrete Fourier transforms on graphics processors , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[6]  S. Van Duyne,et al.  The 2-D digital waveguide mesh , 1993, Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[7]  Jernej Barbic,et al.  Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources , 2006, ACM Trans. Graph..

[8]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[9]  John B. Schneider,et al.  A selective survey of the finite-difference time-domain literature , 1995 .

[10]  Wei-Ping Huang,et al.  Application and optimization of PML ABC for the 3-D wave equation in the time domain , 2003 .

[11]  Sylvain Lefebvre,et al.  Instant Sound Scattering , 2007, Rendering Techniques.

[12]  Thomas Funkhouser,et al.  A beam tracing method for interactive architectural acoustics. , 2004, The Journal of the Acoustical Society of America.

[13]  M. Karjalainen,et al.  Blocked-based physical modeling for digital sound synthesis , 2007, IEEE Signal Processing Magazine.

[14]  Carlos A. de Moura Parallel Numerical Methods for Differential Equations , 2002 .

[15]  Qing‐Huo Liu The PSTD algorithm: A time-domain method combining the pseudospectral technique and perfectly matched layers , 1997 .

[16]  Murray Hodgson,et al.  Experimental evaluation of radiosity for room sound-field prediction. , 2006, The Journal of the Acoustical Society of America.

[17]  D. Murphy,et al.  Acoustic Modeling Using the Digital Waveguide Mesh , 2007, IEEE Signal Processing Magazine.

[18]  Hans Hagen,et al.  Visualizing the Phonon Map , 2006, EuroVis.

[19]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[20]  Dinesh K. Pai,et al.  FoleyAutomatic: physically-based sound effects for interactive simulation and animation , 2001, SIGGRAPH.

[21]  T. Lokki,et al.  Geometry reduction in room acoustics modeling , 2008 .

[22]  Julie Dorsey,et al.  Audioptimization: goal-based acoustic design , 2000 .

[23]  Roger Peyret Domain Decomposition Method , 2002 .

[24]  S. Nepomnyaschikh,et al.  Domain Decomposition Methods , 2007 .

[25]  B. B. Bauer,et al.  Fundamentals of acoustics , 1963 .

[26]  Yoshinori Dobashi,et al.  Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics , 2003, ACM Trans. Graph..

[27]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[28]  U. Peter Svensson,et al.  Fast Time-Domain Edge-Diffraction Calculations for Interactive Acoustic Simulations , 2007, EURASIP J. Adv. Signal Process..

[29]  Dick Botteldooren,et al.  ACOUSTICAL FINITE-DIFFERENCE TIME-DOMAIN SIMULATION IN A QUASI-CARTESIAN GRID , 1994 .

[30]  Augusto Sarti,et al.  REAL TIME MODELING OF ACOUSTIC PROPAGATION IN COMPLEX ENVIRONMENTS , 2004 .

[31]  Lauri Savioja,et al.  Modeling Techniques for Virtual Acoustics , 1999 .

[32]  Ming C. Lin,et al.  Interactive sound synthesis for large scale environments , 2006, I3D '06.

[33]  Shinichi Sakamoto,et al.  Numerical analysis of sound propagation in rooms using the finite difference time domain method , 2006 .

[34]  Jont B. Allen,et al.  Image method for efficiently simulating small‐room acoustics , 1976 .

[35]  Michael J. Rycroft,et al.  Computational Electrodynamics, The Finite-Difference Time-Domain Method , 1996 .

[36]  Tapio Takala,et al.  Sound rendering , 1992, SIGGRAPH.

[37]  D. Botteldooren Finite‐difference time‐domain simulation of low‐frequency room acoustic problems , 1995 .

[38]  J. H. Rindel,et al.  The Use of Computer Modeling in Room Acoustics , 2000 .

[39]  Mendel Kleiner,et al.  Auralization-An Overview , 1993 .

[40]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[41]  Hans Hagen,et al.  Phonon tracing for auralization and visualization of sound , 2005, VIS 05. IEEE Visualization, 2005..

[42]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[43]  A. Krokstad,et al.  Calculating the acoustical room response by the use of a ray tracing technique , 1968 .

[44]  Hideki Tachibana,et al.  Visualization of sound reflection and diffraction using finite difference time domain method , 2002 .

[45]  R. Rabenstein,et al.  Simulation of room acoustics via block-based physical modeling with the functional transformation method , 2005, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005..

[46]  Chen Shen,et al.  Synthesizing sounds from rigid-body simulations , 2002, SCA '02.

[47]  Gregory B. Newby,et al.  Virtual reality: Scientific and technological challenges , 1996 .