The LDA-1/2 method implemented in the exciting code

Abstract Within the framework of density functional theory, the LDA-1/2 method is an alternative to hybrid functionals, capable of reaching similar accuracy in electronic-structure calculations, but at the computational cost of semilocal functionals. In this manuscript, we report the implementation of the LDA-1/2 method in the all-electron full-potential code exciting . We exemplify the performance of our implementation by calculating band gaps of semiconductors and highest occupied energy levels of atoms.

[1]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[2]  R. R. Pelá,et al.  Combined LDA and LDA-1/2 method to obtain defect formation energies in large silicon supercells , 2013 .

[3]  Jivr'i Klimevs,et al.  Predictive GW calculations using plane waves and pseudopotentials , 2014, 1404.3101.

[4]  R. R. Pelá,et al.  GaMnAs: Position of Mn-d levels and majority spin band gap predicted from GGA-1/2 calculations , 2012 .

[5]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[6]  John C. Slater,et al.  STATISTICAL EXCHANGE AND THE TOTAL ENERGY OF A CRYSTAL. , 2009 .

[7]  R. R. Pelá,et al.  Charge transition levels of Mn-doped Si calculated with the GGA-1/2 method , 2014 .

[8]  Chao Yang,et al.  GW100: Benchmarking G0W0 for Molecular Systems. , 2015, Journal of chemical theory and computation.

[9]  Thomas Olsen,et al.  Quasiparticle GW calculations for solids, molecules, and two-dimensional materials , 2013, 1305.6512.

[10]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[11]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[12]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[14]  Christoph Friedrich,et al.  Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0 , 2010, 1003.0524.

[15]  Atsushi Oshiyama,et al.  Comparative study of hybrid functionals applied to structural and electronic properties of semiconductors and insulators , 2011, 1104.2769.

[16]  R R Pela,et al.  Comparing LDA-1/2, HSE03, HSE06 and G0W0 approaches for band gap calculations of alloys , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  R. R. Pelá,et al.  All-out band structure and band offset ab initio predictions for AlN/GaN and AlP/GaP interfaces , 2013 .

[18]  Lara K. Teles,et al.  Approximation to density functional theory for the calculation of band gaps of semiconductors , 2008, 0808.0729.

[19]  Patrick Rinke,et al.  Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals. , 2016, Journal of chemical theory and computation.

[20]  S. Blugel,et al.  Band convergence and linearization error correction of all-electron GW calculations: The extreme case of zinc oxide , 2011, 1102.3255.

[21]  Lara K. Teles,et al.  Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors , 2011 .

[22]  Claudia Draxl,et al.  Accurate all-electron G 0 W 0 quasiparticle energies employing the full-potential augmented plane-wave method , 2016, 1605.07351.

[23]  Claudia Draxl,et al.  exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  R. R. Pelá,et al.  Influence of structure and thermodynamic stability on electronic properties of two-dimensional SiC, SiGe, and GeC alloys , 2015 .

[25]  Claudia Draxl,et al.  Probing the LDA-1/2 method as a starting point forG0W0calculations , 2016, 1608.03776.

[26]  Richard L. Martin,et al.  Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional , 2006 .

[27]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[28]  Andris Gulans,et al.  Towards numerically accurate many-body perturbation theory: short-range correlation effects. , 2014, The Journal of chemical physics.

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[31]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[32]  E J Baerends,et al.  The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies. , 2013, Physical chemistry chemical physics : PCCP.

[33]  Luiz G. Ferreira,et al.  The LDA-1/2 technique: Recent developments , 2013 .

[34]  G. Scuseria,et al.  Improved semiconductor lattice parameters and band gaps from a middle-range screened hybrid exchange functional , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Patrick Rinke,et al.  Benchmark of GW Approaches for the GW100 Test Set. , 2016, Journal of chemical theory and computation.

[36]  J. C. Slater,et al.  Self-Consistent-Field X α Cluster Method for Polyatomic Molecules and Solids , 1972 .

[37]  R. R. Pelá,et al.  Accurate band gaps of AlGaN‚ InGaN‚ and AlInN alloys calculations based on LDA-1/2 approach , 2011 .

[38]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[39]  J. Janak,et al.  Proof that ? E /? n i =e in density-functional theory , 1978 .

[40]  Xavier Gonze,et al.  Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the electronic structure , 2015, 1505.07738.

[41]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .

[42]  Fabien Bruneval,et al.  Benchmarking the Starting Points of the GW Approximation for Molecules. , 2013, Journal of chemical theory and computation.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[45]  J. R. Leite,et al.  Effects of the Coulomb Correlation on the Calculated Results for Atoms with and without Spin Polarization , 1971 .