Application of Finite Gaussian Process Distribution of Relaxation Times on Sofc Electrodes

[1]  F. Ciucci,et al.  The Probabilistic Deconvolution of the Distribution of Relaxation Times with Finite Gaussian Processes , 2021, Electrochimica Acta.

[2]  Volker L. Deringer,et al.  Gaussian Process Regression for Materials and Molecules , 2021, Chemical reviews.

[3]  Ryan O'Hayre,et al.  Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion , 2020 .

[4]  Yang Wang,et al.  Anatomy of Complex System Research , 2020, Complex..

[5]  Francesco Ciucci,et al.  The Gaussian Process Hilbert Transform (GP-HT): Testing the Consistency of Electrochemical Impedance Spectroscopy Data , 2020 .

[6]  R. D. De Souza,et al.  Grain-boundary diffusion of cations in fluorite-type oxides is faster but not always easier , 2020 .

[7]  W. Chueh,et al.  Theory of coupled ion-electron transfer kinetics , 2020, 2007.12980.

[8]  E. Ivers-Tiffée,et al.  How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells , 2020 .

[9]  Martin Z. Bazant,et al.  Analysis, Design, and Generalization of Electrochemical Impedance Spectroscopy (EIS) Inversion Algorithms , 2020, Journal of The Electrochemical Society.

[10]  J. Nørskov,et al.  Electric Field Effects in Oxygen Reduction Kinetics: Rationalizing pH Dependence at the Pt(111), Au(111), and Au(100) Electrodes , 2020, The Journal of Physical Chemistry C.

[11]  F. Ciucci,et al.  A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: Probabilistic estimates and quality scores , 2020, Electrochimica Acta.

[12]  M. Bram,et al.  The Relation of Microstructure, Materials Properties and Impedance of SOFC Electrodes: A Case Study of Ni/GDC Anodes , 2020 .

[13]  Thomas G. Dietterich What is machine learning? , 2015, Archives of Disease in Childhood.

[14]  Francesco Ciucci,et al.  The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data , 2020 .

[15]  Francesco Ciucci,et al.  The Deep-Prior Distribution of Relaxation Times , 2020 .

[16]  K. Friedrich,et al.  Electrochemical Impedance Analysis of Symmetrical Ni/Gadolinium-Doped Ceria (CGO10) Electrodes in Electrolyte-Supported Solid Oxide Cells , 2019, Journal of The Electrochemical Society.

[17]  Alexander Schmid,et al.  The Current-Voltage Characteristics and Partial Pressure Dependence of Defect Controlled Electrochemical Reactions on Mixed Conducting Oxides , 2019, Journal of The Electrochemical Society.

[18]  Michael A. Danzer,et al.  Optimized Process Parameters for a Reproducible Distribution of Relaxation Times Analysis of Electrochemical Systems , 2019, Batteries.

[19]  Francesco Ciucci,et al.  Modeling electrochemical impedance spectroscopy , 2019, Current Opinion in Electrochemistry.

[20]  M. Bram,et al.  Hydrogen oxidation mechanisms on Ni/yttria stabilized zirconia anodes: Separation of reaction pathways by geometry variation of pattern electrodes , 2018 .

[21]  B. Boukamp Derivation of a Distribution Function of Relaxation Times for the (fractal) Finite Length Warburg. , 2017 .

[22]  J. Rupp,et al.  Design of Oxygen Vacancy Configuration for Memristive Systems. , 2017, ACS nano.

[23]  Mohammed B. Effat,et al.  Bayesian and Hierarchical Bayesian Based Regularization for Deconvolving the Distribution of Relaxation Times from Electrochemical Impedance Spectroscopy Data , 2017 .

[24]  M. Bazant,et al.  Multiphase Porous Electrode Theory , 2017, 1702.08432.

[25]  W. Chueh,et al.  Origin and Tunability of Unusually Large Surface Capacitance in Doped Cerium Oxide Studied by Ambient‐Pressure X‐Ray Photoelectron Spectroscopy , 2016, Advanced materials.

[26]  Hassan Maatouk,et al.  Gaussian Process Emulators for Computer Experiments with Inequality Constraints , 2016, Mathematical Geosciences.

[27]  M. Hävecker,et al.  Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[28]  Ting Hei Wan,et al.  Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools , 2015 .

[29]  Francesco Ciucci,et al.  Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach , 2015 .

[30]  Yu Chen,et al.  Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy , 2015 .

[31]  M. Bazant,et al.  Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells , 2014, 1412.1548.

[32]  S. Bishop,et al.  Nonstoichiometry in Oxide Thin Films Operating under Anodic Conditions: A Chemical Capacitance Study of the Praseodymium–Cerium Oxide System , 2014 .

[33]  Ting Hei Wan,et al.  Optimal Regularization in Distribution of Relaxation Times applied to Electrochemical Impedance Spectroscopy: Ridge and Lasso Regression Methods - A Theoretical and Experimental Study , 2014 .

[34]  Nigel P. Brandon,et al.  In-Operando Raman Spectroscopy Study of Passivation Effects on Ni-CGO Electrodes in CO2 Electrolysis Conditions , 2013 .

[35]  Ari Pakman,et al.  Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians , 2012, 1208.4118.

[36]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[37]  Wei Lai,et al.  Mathematical Modeling of Porous Battery Electrodes-Revisit of Newman's Model , 2011 .

[38]  W. Chueh,et al.  Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. , 2009, Physical chemistry chemical physics : PCCP.

[39]  E. Wachsman,et al.  Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide , 2009 .

[40]  W. Bessler,et al.  A new framework for physically based modeling of solid oxide fuel cells , 2007 .

[41]  Y. Xiong,et al.  Materials and reaction mechanisms at anode/electrolyte interfaces for SOFCs , 2006 .

[42]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[43]  Y. Xiong,et al.  Significant effect of water on surface reaction and related electrochemical properties of mixed conducting oxides , 2004 .

[44]  Y. Xiong,et al.  Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses , 2004 .

[45]  Mogens Bjerg Mogensen,et al.  Structure/Performance Relations for Ni/Yttria‐Stabilized Zirconia Anodes for Solid Oxide Fuel Cells , 2000 .

[46]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[47]  Mogens Bjerg Mogensen,et al.  Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes , 1997 .

[48]  B. Boukamp,et al.  Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes , 2018 .

[49]  Sébastien Da Veiga,et al.  Gaussian process modeling with inequality constraints , 2012 .