Optimization of the bulk heterojunction composition for enhanced photovoltaic properties: correlation between the molecular weight of the semiconducting polymer and device performance.

Herein we propose an approach toward the optimization of the photovoltaic performance of bulk heterojunctions by tuning the composition of the active layer with respect to the molecular weight of the semiconducting polymer. We used a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blend as a typical system and varied the molecular weight of the P3HT semiconducting polymer in order to determine its influence on the bulk heterojunction morphology as well as on the optoelectronic characteristics of the device. We have systematically mapped out the phase diagram for different molecular weight P3HTs blended with PCBM and observed the presence of a eutectic composition, which shifts to higher content of P3HT for lower molecular weight P3HTs. This shift inherent to the P3HT molecular weight is also apparent in the photovoltaic performance as the eutectic composition corresponds to the best of the photovoltaic properties. The P3HT molecular weight dependence of the eutectic composition is due to the molecular weight dependence of the P3HT crystallization behavior, which leads to dramatic morphological changes of the bulk heterojunction.

[1]  Jin Young Kim,et al.  Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells , 2007 .

[2]  Maik Bärenklau,et al.  P3HT/PCBM Bulk Heterojunction Solar Cells: Impact of Blend Composition and 3D Morphology on Device Performance , 2010 .

[3]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[4]  Juan Bisquert,et al.  Temperature dependence of open-circuit voltage and recombination processes in polymer–fullerene based solar cells , 2011 .

[5]  D. Bradley,et al.  Composition and annealing effects in polythiophene/fullerene solar cells , 2005 .

[6]  Bong-Gi Kim,et al.  Effective variables to control the fill factor of organic photovoltaic cells. , 2009, ACS applied materials & interfaces.

[7]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[8]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[9]  Yang Yang,et al.  Efficiency enhancement in organic solar cells with ferroelectric polymers. , 2011, Nature materials.

[10]  Harald Ade,et al.  A Quantitative Study of PCBM Diffusion during Annealing of P3HT:PCBM Blend Films , 2009 .

[11]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[12]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[13]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[14]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[15]  Daniel Moses,et al.  Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials , 2008 .

[16]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[17]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[18]  Roald Hoffmann,et al.  A Chemical Approach to the Orbitals of Organic Polymers , 1991 .

[19]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.

[20]  Christoph J. Brabec,et al.  Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells , 2005 .

[21]  Richard D. McCullough,et al.  Employing MALDI-MS on Poly(alkylthiophenes): Analysis of Molecular Weights, Molecular Weight Distributions, End-Group Structures, and End-Group Modifications , 1999 .

[22]  P. Blom,et al.  Impact of molecular weight on charge carrier dissociation in solar cells from a polyfluorene derivative , 2009 .

[23]  Influence of molar mass distribution on the compatibility of polymers , 1996 .

[24]  Martin Brinkmann,et al.  Effect of Molecular Weight on the Structure and Morphology of Oriented Thin Films of Regioregular Poly(3‐hexylthiophene) Grown by Directional Epitaxial Solidification , 2007 .

[25]  Tsutomu Yokozawa,et al.  Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity , 2004 .

[26]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[27]  Donal D. C. Bradley,et al.  The Effect of Poly(3‐hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene Solar Cells , 2008 .

[28]  Luigi Colombo,et al.  Effect of nitrogen on band alignment in HfSiON gate dielectrics , 2005 .

[29]  P. Rannou,et al.  Molecular Weight Dependence of Chain Packing and Semicrystalline Structure in Oriented Films of Regioregular Poly(3-hexylthiophene) Revealed by High-Resolution Transmission Electron Microscopy , 2009 .

[30]  J. D’Haen,et al.  Tuning the Dimensions of C60‐Based Needlelike Crystals in Blended Thin Films , 2006 .

[31]  G. Hadziioannou,et al.  Oligo(phenylenevinylene)/Fullerene Photovoltaic Cells : Influence of Morphology , 1999 .

[32]  T. Kowalewski,et al.  Conducting Block Copolymer Nanowires Containing Regioregular Poly(3‐Hexylthiophene) and Polystyrene , 2006 .

[33]  Stephen R. Forrest,et al.  Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells , 2009 .

[34]  Robert S. Loewe,et al.  A Simple Method to Prepare Head‐to‐Tail Coupled, Regioregular Poly(3‐alkylthiophenes) Using Grignard Metathesis , 1999 .

[35]  R. J. Kline,et al.  Measuring the Extent of Phase Separation in Poly-3-Hexylthiophene/Phenyl-C61-Butyric Acid Methyl Ester Photovoltaic Blends with 1H Spin Diffusion NMR Spectroscopy , 2010 .

[36]  Thuc‐Quyen Nguyen,et al.  Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy , 2008 .

[37]  C. Ha,et al.  Abrupt Morphology Change upon Thermal Annealing in Poly(3‐Hexylthiophene)/Soluble Fullerene Blend Films for Polymer Solar Cells , 2010 .

[38]  Jean Manca,et al.  Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. , 2009, The journal of physical chemistry. B.

[39]  O. Inganäs,et al.  Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative , 2004 .

[40]  K. S. Narayan,et al.  Fill factor in organic solar cells , 2010 .

[41]  M. Mackay,et al.  Nanoparticle concentration profile in polymer-based solar cells , 2010 .

[42]  J. Moon,et al.  Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. , 2011, Nano letters.

[43]  R. Mezzenga,et al.  A New Supramolecular Route for Using Rod‐Coil Block Copolymers in Photovoltaic Applications , 2010, Advanced materials.

[44]  Vladimir Dyakonov,et al.  Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites , 2004 .

[45]  C. Frank,et al.  Effect of molecular weight on polymer blend phase separation kinetics , 1983 .

[46]  J. D’Haen,et al.  Dual crystallization behaviour of polythiophene/fullerene blends , 2006 .

[47]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[48]  David G Lidzey,et al.  Depletion of PCBM at the Cathode Interface in P3HT/PCBM Thin Films as Quantified via Neutron Reflectivity Measurements , 2010, Advanced materials.

[49]  Zhenan Bao,et al.  Organic Semiconductor Growth and Morphology Considerations for Organic Thin‐Film Transistors , 2010, Advanced materials.

[50]  M. Mackay,et al.  Nanoparticle agglomeration in polymer-based solar cells. , 2010, Physical review letters.

[51]  D. Ginger,et al.  Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties. , 2010, ACS nano.

[52]  Xiaoniu Yang,et al.  The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene–Fullerene Bulk Heterojunction , 2005 .

[53]  Darin W. Laird,et al.  Chain Growth Mechanism for Regioregular Nickel-Initiated Cross-Coupling Polymerizations , 2004 .

[54]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[55]  E. Helfand,et al.  Molecular weight and polydispersity effects at polymer-polymer interfaces , 1990 .

[56]  M. Urien,et al.  Poly(3-hexylthiophene) based block copolymers prepared by "click" chemistry , 2008 .

[57]  A. Pron,et al.  Effect of macromolecular parameters and processing conditions on supramolecular organisation, morphology and electrical transport properties in thin layers of regioregular poly(3-hexylthiophene) , 2006 .

[58]  Sudip Malik,et al.  Crystallization mechanism of regioregular poly(3‐alkyl thiophene)s , 2002 .

[59]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[60]  A. Heeger,et al.  The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells , 2009 .

[61]  R. Friend,et al.  Surface-directed spinodal decomposition in poly[3-hexylthiophene] and C₆₁-butyric acid methyl ester blends. , 2011, ACS nano.

[62]  Christoph J. Brabec,et al.  Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells , 2005 .

[63]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[64]  G. Malliaras,et al.  Sexithiophene-C60 blends as model systems for photovoltaic devices , 1997 .

[65]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[66]  E. Thomas,et al.  Phase contrast imaging of styrene-isoprene and styrene-butadiene block copolymers , 1983 .

[67]  C. McNeill,et al.  Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects , 2008 .

[68]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[69]  Etienne Goovaerts,et al.  Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells , 2008 .

[70]  R. D. Mccullough,et al.  In‐Situ End‐Group Functionalization of Regioregular Poly(3‐alkylthiophene) Using the Grignard Metathesis Polymerization Method , 2004 .

[71]  Bernard Kippelen,et al.  Origin of the open-circuit voltage in multilayer heterojunction organic solar cells , 2008 .

[72]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .