On the convergence of the wavelet-Galerkin method for nonlinear filtering

On the convergence of the wavelet-Galerkin method for nonlinear filtering The aim of the paper is to examine the wavelet-Galerkin method for the solution of filtering equations. We use a wavelet biorthogonal basis with compact support for approximations of the solution. Then we compute the Zakai equation for our filtering problem and consider the implicit Euler scheme in time and the Galerkin scheme in space for the solution of the Zakai equation. We give theorems on convergence and its rate. The method is numerically much more efficient than the classical Galerkin method.

[1]  R. Elliott,et al.  Approximations to solutions of the zakai filtering equation , 1989 .

[2]  Wolfgang Dahmen,et al.  Multiscale Problems and Methods in Numerical Simulations: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 9-15, 2001 , 2004 .

[3]  H. McKean STOCHASTIC INTEGRAL EQUATIONS ( d = 1) , 1969 .

[4]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[5]  Z. Ciesielski Hölder conditions for realizations of Gaussian processes , 1961 .

[6]  N. U. Ahmed,et al.  A Powerful Numerical Technique Solving Zakai Equation for Nonlinear Filtering , 1997 .

[7]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[8]  Stephen S.-T. Yau,et al.  Real time solution of nonlinear filtering problem without memory I , 2000 .

[9]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[10]  A. Germani,et al.  A Galerkin approximation for the Zakai equation , 1984 .

[11]  Jianzhong Wang,et al.  Spline Wavelets in Numerical Resolution of Partial Differential Equations , 2002 .

[12]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[13]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[14]  D. Larson,et al.  Wandering Vectors for Unitary Systems and Orthogonal Wavelets , 1998 .

[15]  Shing-Tung Yau,et al.  Real Time Solution of the Nonlinear Filtering Problem without Memory II , 2008, SIAM J. Control. Optim..

[16]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[17]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[18]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[19]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[20]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[21]  D. Ocone,et al.  Unique characterization of conditional distributions in nonlinear filtering , 1984, The 23rd IEEE Conference on Decision and Control.

[22]  Christoph Schwab,et al.  Wavelet Discretizations of Parabolic Integrodifferential Equations , 2003, SIAM J. Numer. Anal..

[23]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[24]  Dan Crisan,et al.  Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..

[25]  J. Bennaton,et al.  Discrete time Galerkin approximations to the nonlinear filtering solution , 1985 .

[26]  K. Ito Approximation of the Zakai Equation for Nonlinear Filtering , 1996 .

[27]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[28]  Christoph Schwab,et al.  Sparse Wavelet Methods for Option Pricing under Stochastic Volatility , 2004 .

[29]  B. Rozovskii A Simple Proof of Uniqueness for Kushner and Zakai Equations , 1991 .

[30]  C. Canuto Multiscale Problems and methods in Numerical Simulations , 2003 .

[31]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[32]  P. Wojtaszczyk,et al.  A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .

[33]  Reinhold Schneider,et al.  Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.

[34]  Krystyna Twardowska,et al.  Approximation of the Zakai Equation in a Nonlinear Filtering Problem With Delay , 2003 .