On the convergence of the wavelet-Galerkin method for nonlinear filtering
暂无分享,去创建一个
Lukasz D. Nowak | Monika Paslawska-Poludniak | Krystyna Twardowska | K. Twardowska | M. Paslawska-Poludniak
[1] R. Elliott,et al. Approximations to solutions of the zakai filtering equation , 1989 .
[2] Wolfgang Dahmen,et al. Multiscale Problems and Methods in Numerical Simulations: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 9-15, 2001 , 2004 .
[3] H. McKean. STOCHASTIC INTEGRAL EQUATIONS ( d = 1) , 1969 .
[4] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[5] Z. Ciesielski. Hölder conditions for realizations of Gaussian processes , 1961 .
[6] N. U. Ahmed,et al. A Powerful Numerical Technique Solving Zakai Equation for Nonlinear Filtering , 1997 .
[7] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[8] Stephen S.-T. Yau,et al. Real time solution of nonlinear filtering problem without memory I , 2000 .
[9] É. Pardoux,et al. Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .
[10] A. Germani,et al. A Galerkin approximation for the Zakai equation , 1984 .
[11] Jianzhong Wang,et al. Spline Wavelets in Numerical Resolution of Partial Differential Equations , 2002 .
[12] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[13] Harry Yserentant,et al. Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .
[14] D. Larson,et al. Wandering Vectors for Unitary Systems and Orthogonal Wavelets , 1998 .
[15] Shing-Tung Yau,et al. Real Time Solution of the Nonlinear Filtering Problem without Memory II , 2008, SIAM J. Control. Optim..
[16] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[17] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[18] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[19] A. Shiryayev,et al. Statistics of Random Processes I: General Theory , 1984 .
[20] Alʹbert Nikolaevich Shiri︠a︡ev,et al. Statistics of random processes , 1977 .
[21] D. Ocone,et al. Unique characterization of conditional distributions in nonlinear filtering , 1984, The 23rd IEEE Conference on Decision and Control.
[22] Christoph Schwab,et al. Wavelet Discretizations of Parabolic Integrodifferential Equations , 2003, SIAM J. Numer. Anal..
[23] Christoph Schwab,et al. Wavelet approximations for first kind boundary integral equations on polygons , 1996 .
[24] Dan Crisan,et al. Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..
[25] J. Bennaton,et al. Discrete time Galerkin approximations to the nonlinear filtering solution , 1985 .
[26] K. Ito. Approximation of the Zakai Equation for Nonlinear Filtering , 1996 .
[27] B. Rozovskii,et al. Stochastic evolution equations , 1981 .
[28] Christoph Schwab,et al. Sparse Wavelet Methods for Option Pricing under Stochastic Volatility , 2004 .
[29] B. Rozovskii. A Simple Proof of Uniqueness for Kushner and Zakai Equations , 1991 .
[30] C. Canuto. Multiscale Problems and methods in Numerical Simulations , 2003 .
[31] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[32] P. Wojtaszczyk,et al. A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .
[33] Reinhold Schneider,et al. Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.
[34] Krystyna Twardowska,et al. Approximation of the Zakai Equation in a Nonlinear Filtering Problem With Delay , 2003 .