Interferometric Space Missions for Exoplanet Science: Legacy of Darwin/TPF

DARWIN/TPF is a project of an infrared space-based interferometer designed to directly detect and characterize terrestrial exoplanets around nearby stars. Unlike spectro-photometric instruments observing planetary transits, an interferometer does not rely on any particular geometric constraints and could characterize exoplanets with any orbital configuration around nearby stars. The idea to use an infrared nulling interferometer to characterize exoplanets dates back to Bracewell (1978), and was extensively studied in the 1990s and 2000s by both ESA and NASA. The project focuses on the mid-infrared regime (5-20 μm), which provides access to key features of exoplanets, such as their size, their temperature, the presence of an atmosphere, their climate structure, as well as the presence of important atmospheric molecules such as H2O, CO2, O3, NH3, and CH4. This wavelength regime also provides a favorable planet/star contrast to detect the thermal emission of temperate (∼ 300 K) exoplanets (107 vs 1010 in the visible). In this chapter, we first review the scientific rationale of a mid-infrared nulling interferometer and present how it would provide an essential context for interpreting detections of possible biosignatures. Then, we present the main technological challenges identified during the ESA and NASA studies, and how they have progressed over the last 10 years. Finally, we discuss which technologies remain to be developed before flying such an instrument, and possible ways to make DARWIN/TPF a reality in the mid-term future.

[1]  Joshua Krissansen-Totton,et al.  On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. , 2015, Astrobiology.

[2]  J. Leconte,et al.  The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries , 2013, 1305.3858.

[3]  Gautam Vasisht,et al.  Keck Interferometer Nuller Data Reduction and On-Sky Performance , 2009 .

[4]  Sara Seager,et al.  The search for signs of life on exoplanets at the interface of chemistry and planetary science , 2015, Science Advances.

[5]  A. Belu,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - II. Characterizing airless planets , 2011, 1110.3087.

[6]  Anthony J. Peacock,et al.  Darwin-GENIE: a nulling instrument at the VLTI , 2004, SPIE Astronomical Telescopes + Instrumentation.

[7]  W. R. Thompson,et al.  A search for life on Earth from the Galileo spacecraft , 1993, Nature.

[8]  O. Demangeon,et al.  Is the presence of oxygen on an exoplanet a reliable biosignature? , 2011, Astrobiology.

[9]  Paul A. Bierden,et al.  A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror , 2009 .

[10]  Thomas Pertsch,et al.  Interferometric nulling of four channels with integrated optics. , 2015, Applied optics.

[11]  Brigitte Schurmann Darwin and astronomy : the infrared space interferometer , 1999 .

[12]  Stefan Martin,et al.  Planet-finding performance of the TPF-I Emma architecture , 2007, SPIE Optical Engineering + Applications.

[13]  J. Lederberg,et al.  Signs of Life: Criterion-System of Exobiology , 1965, Nature.

[14]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[15]  B. Mennesson,et al.  Array Configurations for a Space Infrared Nulling Interferometer Dedicated to the Search for Earthlike Extrasolar Planets , 1997 .

[16]  I D Aggarwal,et al.  Characterization of mid-infrared single mode fibers as modal filters. , 2007, Applied optics.

[17]  J. Lovelock,et al.  A Physical Basis for Life Detection Experiments , 1965, Nature.

[19]  E. Gaidos,et al.  The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets. , 2008, Astrobiology.

[20]  Bertrand Mennesson,et al.  IMPROVING INTERFEROMETRIC NULL DEPTH MEASUREMENTS USING STATISTICAL DISTRIBUTIONS: THEORY AND FIRST RESULTS WITH THE PALOMAR FIBER NULLER , 2011 .

[21]  Marc Ollivier,et al.  The DARWIN project , 1996 .

[22]  R. den Hartog,et al.  Status and recent progress of the Darwin mission in the Cosmic Vision program , 2006, SPIE Astronomical Telescopes + Instrumentation.

[23]  E. Ford,et al.  Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. , 2005, Astrobiology.

[24]  William C. Danchi,et al.  The Fourier-Kelvin Stellar Interferometer (FKSI): a review, progress report, and update , 2008, Astronomical Telescopes + Instrumentation.

[25]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[26]  James Roger P. Angel,et al.  Detection and spectroscopy of exo-planets like Earth , 1997, Other Conferences.

[27]  Glenn Lund,et al.  DARWIN – The infrared space interferometer , 2001 .

[28]  Bernhard R. Brandl,et al.  Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.

[29]  A. J. Booth,et al.  Demonstration of exoplanet detection using an infrared telescope array , 2010 .

[30]  R. Bracewell Detecting nonsolar planets by spinning infrared interferometer , 1978, Nature.

[31]  Anne-Sophie Libert,et al.  Habitability of planets on eccentric orbits: Limits of the mean flux approximation , 2015, 1604.06091.

[32]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[33]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[34]  Eugene Serabyn,et al.  System design and technology development for the Terrestrial Planet Finder infrared interferometer , 2003, SPIE Optics + Photonics.

[35]  Nathaniel Virgo,et al.  Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth's atmosphere , 2013 .

[36]  Neville J. Woolf,et al.  ASTRONOMICAL SEARCHES FOR EARTH-LIKE PLANETS AND SIGNS OF LIFE , 1998 .

[37]  J. Angel,et al.  A space telescope for infrared spectroscopy of Earth-like planets , 1986, Nature.

[38]  Oswald Wallner,et al.  Minimum length of a single-mode fiber spatial filter. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  Stefan Martin,et al.  High performance testbed for four-beam infrared interferometric nulling and exoplanet detection. , 2012, Applied optics.

[40]  R. den Hartog,et al.  Earth-like planets: science performance predictions for future nulling interferometry missions , 2008, Astronomical Telescopes + Instrumentation.

[41]  O. Absil,et al.  Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection , 2008, 0808.3713.

[42]  E. Serabyn,et al.  High contrast stellar observations within the diffraction limit at the Palomar Hale telescope , 2010, Astronomical Telescopes + Instrumentation.

[43]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[44]  A Katzir,et al.  Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers. , 2008, Applied optics.

[45]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[46]  Pierre-Olivier Lagage,et al.  METIS : the mid-infrared E-ELT imager and spectrograph , 2008 .

[47]  C.V.M. Fridlund The DARWIN project - An ESA cornerstone candidate mission , 2004 .

[48]  Alain Léger,et al.  Search for primitive life on a distant planet: relevance of O2 and O3 detections , 1993 .

[49]  Oliver P. Lay,et al.  Mid-Infrared Adaptive Nulling for the Detection of Earthlike Exoplanets , 2010 .

[50]  Olivier Absil,et al.  Three telescope nuller based on multibeam injection into single-mode waveguide , 2004, SPIE Astronomical Telescopes + Instrumentation.

[51]  Franck Selsis,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - I. Characterizing atmospheres , 2011, 1104.4763.

[52]  F. Selsis The Atmosphere of Terrestrial Exoplanets: Detection and Characterization , 2004 .

[53]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[54]  Wesley A. Traub,et al.  Direct imaging of Earth-like planets from space (TPF-C) , 2006, SPIE Astronomical Telescopes + Instrumentation.

[55]  Dimitar Sasselov,et al.  Spectral fingerprints of Earth-like planets around FGK stars. , 2012, Astrobiology.

[56]  H. Rauer,et al.  Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study , 2011, 1108.3670.

[57]  Axel Kleidon,et al.  Life, hierarchy, and the thermodynamic machinery of planet Earth. , 2010, Physics of life reviews.

[58]  Vianak Naranjo,et al.  GRAVITY: observing the universe in motion , 2011 .

[59]  B. Mennesson,et al.  Achromatic broadband nulling using a phase grating , 2017 .

[60]  G. Johnson Encyclopedia of Astrobiology , 2013 .

[61]  Vanessa P. Bailey,et al.  Commissioning the LBTI for use as a nulling interferometer and coherent imager , 2014, Astronomical Telescopes and Instrumentation.

[62]  Dorian S. Abbot,et al.  THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING , 2012, 1205.5034.

[63]  Joseph Catanzarite,et al.  Finding Earth clones with SIM: the most promising near-term technique to detect, find masses for, and determine three-dimensional orbits of nearby habitable planets , 2007, SPIE Optical Engineering + Applications.

[64]  C. Fridlund,et al.  Target star catalogue for Darwin Nearby Stellar sample for a search for terrestrial planets , 2008, 0810.5138.

[65]  R. Hazen,et al.  Statistical analysis of mineral diversity and distribution: Earth's mineralogy is unique , 2015 .

[66]  Martin G. Cohen,et al.  Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. , 2003, Astrobiology.

[67]  H. Rauer,et al.  Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star. , 2007, Astrobiology.

[68]  A. Burrows Highlights in the study of exoplanet atmospheres , 2014, Nature.

[69]  Neville J. Woolf,et al.  Single and double bracewell nulling interferometer in space , 2003 .

[70]  B. Chazelas,et al.  PEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars , 2009 .

[71]  E. Serabyn,et al.  NULLING DATA REDUCTION AND ON-SKY PERFORMANCE OF THE LARGE BINOCULAR TELESCOPE INTERFEROMETER , 2016, 1601.06866.

[72]  C. Hanot,et al.  Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions , 2009, 0910.3486.

[73]  Wesley A. Traub,et al.  Earth-Like Exoplanets: The Science of NASA's Navigator Program , 2006 .

[74]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[75]  Sara Seager,et al.  The search for life beyond the solar system , 2002 .

[76]  William C. Danchi,et al.  CONSTRAINING THE EXOZODIACAL LUMINOSITY FUNCTION OF MAIN-SEQUENCE STARS: COMPLETE RESULTS FROM THE KECK NULLER MID-INFRARED SURVEYS , 2014 .

[77]  H. Rauer,et al.  Clouds in the atmospheres of extrasolar planets III. Impact of low and high-level clouds on the reflection spectra of Earth-like planets , 2011, 1108.3274.

[78]  Illeana Gómez Leal Spectrophotometry of the infrared emission of Earth-like Planets , 2013 .

[79]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[80]  Sascha P. Quanz,et al.  Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS , 2014, International Journal of Astrobiology.

[81]  E. Serabyn,et al.  FIRST-LIGHT LBT NULLING INTERFEROMETRIC OBSERVATIONS: WARM EXOZODIACAL DUST RESOLVED WITHIN A FEW AU OF η Crv , 2015, 1501.04144.

[82]  Marc Ollivier,et al.  Could We Search for Primitive Life on Extrasolar Planets in the Near Future , 1996 .

[83]  Aki Roberge,et al.  Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study , 2016, Astronomical Telescopes + Instrumentation.

[84]  T. Trautmann,et al.  Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra , 2013, 1301.0217.

[85]  L M Mugnier,et al.  Darwin--a mission to detect and search for life on extrasolar planets. , 2009, Astrobiology.

[86]  B. Mennesson,et al.  Use of single-mode waveguides to correct the optical defects of a nulling interferometer. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[87]  Franck Selsis,et al.  Signature of life on exoplanets: Can Darwin produce false positive detections? , 2002 .

[88]  B. Oppenheimer,et al.  Direct Detection of Exoplanets , 2006 .

[89]  D. Coulter,et al.  The search for worlds like our own. , 2010, Astrobiology.

[90]  Marc Ollivier,et al.  Direct detection and characterization of extrasolar planets: The Mariotti space interferometer , 2005 .

[91]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[92]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[93]  T. Owen The Search for Early Forms of Life in Other Planetary Systems: Future Possibilities Afforded by Spectroscopic Techniques , 1980 .

[94]  W. A. Traub,et al.  Spectral Evolution of an Earth-like Planet , 2006 .

[95]  Gautam Vasisht,et al.  Architecture design study and technology road map for the Planet Formation Imager (PFI) , 2016, Astronomical Telescopes + Instrumentation.

[96]  D. Mawet,et al.  NEW CONSTRAINTS ON COMPANIONS AND DUST WITHIN A FEW AU OF VEGA , 2011 .