On the stability of homogeneous equilibria in the Vlasov-Poisson system on $\mathbb{R}^3$

The goal of this article is twofold. First, we investigate the linearized Vlasov-Poisson system around a family of spatially homogeneous equilibria in $\mathbb{R}^3$ (the unconfined setting). Our analysis follows classical strategies from physics and their subsequent mathematical extensions. The main novelties are a unified treatment of a broad class of analytic equilibria and the study of a class of generalized Poisson equilibria. For the former, this provides a detailed description of the associated Green's functions, including in particular precise dissipation rates (which appear to be new), whereas for the latter we exhibit explicit formulas. Second, we review the main result and ideas in our recent work on the full global nonlinear asymptotic stability of the Poisson equilibrium in $\mathbb{R}^3$.

[1]  Matthew R. I. Schrecker,et al.  Damping versus oscillations for a gravitational Vlasov-Poisson system , 2023, 2301.07662.

[2]  J. Bedrossian A brief introduction to the mathematics of Landau damping , 2022, 2211.13707.

[3]  Mikaela Iacobelli,et al.  Landau Damping on the Torus for the Vlasov-Poisson System with Massless Electrons , 2022, SSRN Electronic Journal.

[4]  Léo Bigorgne Global existence and modified scattering for the small data solutions to the Vlasov-Maxwell system , 2022, 2208.08360.

[5]  B. Pausader,et al.  Stability of a point charge for the repulsive Vlasov-Poisson system , 2022, 2207.05644.

[6]  Quoc-Hung Nguyen,et al.  Nonlinear Landau damping for the 2d Vlasov-Poisson system with massless electrons around Penrose-stable equilibria , 2022, 2206.11744.

[7]  A. Ionescu,et al.  Nonlinear Landau damping for the Vlasov-Poisson system in $\R^3$: the Poisson equilibrium , 2022, 2205.04540.

[8]  Xuecheng Wang Global solution of the 3D Relativistic Vlasov-Maxwell system for large data with cylindrical symmetry , 2022, 2203.01199.

[9]  E. Faou,et al.  On Linear Damping Around Inhomogeneous Stationary States of the Vlasov-HMF Model , 2021, Journal of Dynamics and Differential Equations.

[10]  Gerhard Rein,et al.  On the Existence of Linearly Oscillating Galaxies , 2021, Archive for Rational Mechanics and Analysis.

[11]  B. Pausader,et al.  Scattering Map for the Vlasov–Poisson System , 2021, Peking Mathematical Journal.

[12]  B. Pausader,et al.  Stability of a Point Charge for the Vlasov–Poisson System: The Radial Case , 2020, Communications in Mathematical Physics.

[13]  Toan T. Nguyen,et al.  On the Linearized Vlasov–Poisson System on the Whole Space Around Stable Homogeneous Equilibria , 2020, Communications in Mathematical Physics.

[14]  S. Pankavich Exact Large Time Behavior of Spherically Symmetric Plasmas , 2020, SIAM J. Math. Anal..

[15]  A. Ionescu,et al.  On the Asymptotic Behavior of Solutions to the Vlasov–Poisson System , 2020, 2005.03617.

[16]  Toan T. Nguyen,et al.  Landau damping for analytic and Gevrey data , 2020, Mathematical Research Letters.

[17]  Xuecheng Wang Global solution of the 3D Relativistic Vlasov-Poisson system for a class of large data , 2020, 2003.14191.

[18]  N. Masmoudi,et al.  Nonlinear inviscid damping for a class of monotone shear flows in finite channel , 2020, 2001.08564.

[19]  A. Ionescu,et al.  Nonlinear inviscid damping near monotonic shear flows , 2020, Acta Mathematica.

[20]  Toan T. Nguyen,et al.  Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates , 2019, Annals of PDE.

[21]  A. Ionescu,et al.  Axi‐symmetrization near Point Vortex Solutions for the 2D Euler Equation , 2019, Communications on Pure and Applied Mathematics.

[22]  A. Ionescu,et al.  Inviscid Damping Near the Couette Flow in a Channel , 2018, Communications in Mathematical Physics.

[23]  Xuecheng Wang Decay estimates for the $ 3D $ relativistic and non-relativistic Vlasov-Poisson systems , 2018, Kinetic and Related Models.

[24]  Sun-Ho Choi,et al.  Modified scattering for the Vlasov–Poisson system , 2016 .

[25]  C. Mouhot,et al.  Landau Damping in Finite Regularity for Unconfined Systems with Screened Interactions , 2016, 1604.05783.

[26]  Jacques Smulevici Small Data Solutions of the Vlasov-Poisson System and the Vector Field Method , 2015, 1504.02195.

[27]  E. Faou,et al.  Landau Damping in Sobolev Spaces for the Vlasov-HMF Model , 2014, 1403.1668.

[28]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[29]  C. Mouhot,et al.  Landau Damping: Paraproducts and Gevrey Regularity , 2013, 1311.2870.

[30]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[31]  Yan Guo,et al.  The Euler-Maxwell two-fluid system in 3D , 2013, 1303.1060.

[32]  A. Ionescu,et al.  Global solutions of quasilinear systems of Klein--Gordon equations in 3D , 2012, 1208.2661.

[33]  B. Pausader,et al.  NON-NEUTRAL GLOBAL SOLUTIONS FOR THE ELECTRON EULER-POISSON SYSTEM IN 3D. , 2012, 1204.1536.

[34]  N. Masmoudi,et al.  Global existence for the Euler-Maxwell system , 2011, 1107.1595.

[35]  J. Barré,et al.  Dynamics of perturbations around inhomogeneous backgrounds in the HMF model , 2010 .

[36]  Yan Guo,et al.  Global Smooth Ion Dynamics in the Euler-Poisson System , 2010, 1003.3653.

[37]  Zhiwu Lin,et al.  Small BGK Waves and Nonlinear Landau Damping , 2010, 1003.3005.

[38]  Cl'ement Mouhot,et al.  On Landau damping , 2009, 0904.2760.

[39]  J. Velázquez,et al.  On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem , 2008, 0810.3456.

[40]  Pierre Raphael,et al.  The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System , 2008 .

[41]  J. Velázquez,et al.  Optimal Gradient Estimates and Asymptotic Behaviour for the Vlasov–Poisson System with Small Initial Data , 2006, math/0606389.

[42]  S. Ruffo,et al.  The Vlasov equation and the Hamiltonian Mean-Field model , 2005, cond-mat/0511070.

[43]  Emanuele Caglioti,et al.  Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .

[44]  Yan Guo,et al.  Smooth Irrotational Flows in the Large to the Euler–Poisson System in R3+1 , 1998 .

[45]  Benoît Perthame,et al.  Time decay, propagation of low moments and dispersive effects for kinetic equations , 1996 .

[46]  R. Illner,et al.  Time Decay of the Solutions of the Vlasov–Poisson System in the Plasma Physical Case , 1996 .

[47]  Jack Schaeffer,et al.  Time decay for solutions to the linearized Vlasov equation , 1994 .

[48]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[49]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[50]  P. Degond Spectral theory of the linearized Vlasov-Poisson equation , 1986 .

[51]  Pierre Degond,et al.  Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .

[52]  O. Penrose Electrostatic Instabilities of a Uniform Non‐Maxwellian Plasma , 1960 .

[53]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[54]  Yan Guo Smooth Irrotational Flow in the Large to the Euler-poisson System in R 3+1 , 2007 .

[55]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[56]  J. Callen Fundamentals of Plasma Physics , 2004 .

[57]  Yan Guo Lefschetz Stable Steady States in Stellar Dynamics , 1999 .

[58]  Jack Schaeffer,et al.  On time decay rates in landau damping , 1995 .

[59]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[60]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[61]  Lev Davidovich Landau,et al.  On the vibrations of the electronic plasma , 1946 .