Dynamic and self-stabilizing distributed matching

Finding a maximal or maximum matching in a graph is a well-understood problem for which efficient sequential algorithms exist. Applications of matchings in distributed settings make it desirable to find self-stabilizing asynchronous distributed solutions to these problems. We first present a self-stabilizing algorithm for finding a maximal matching in a general anonymous network under read/write atomicity with linear round complexity. This is followed by a self-stabilizing algorithm, with quadratic time complexity, for finding a maximum matching in a bipartite network under composite atomicity. These results represent significant progress in the area of distributed algorithms for matchings.

[1]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[2]  Ajoy Kumar Datta,et al.  Self-Stabilizing Local Mutual Exclusion and Daemon Refinement , 2000, Chic. J. Theor. Comput. Sci..

[3]  Marcin Paprzycki,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 2001, Scalable Comput. Pract. Exp..

[4]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[5]  Gerard Tel,et al.  Maximal Matching Stabilizes in Quadratic Time , 1994, Inf. Process. Lett..

[6]  Pradip K. Srimani,et al.  A self-stabilizing algorithm for coloring bipartite graphs , 1993, Inf. Sci..

[7]  Shing-Tsaan Huang,et al.  A Self-Stabilizing Algorithm for Maximal Matching , 1992, Inf. Process. Lett..

[8]  Amos Israeli,et al.  Self Stabilization of Dynamic Systems , 1989, The Sixteenth Conference of Electrical and Electronics Engineers in Israel,.

[9]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[10]  Maria Gradinariu Potop-Butucaru,et al.  Self-stabilizing Neighborhood Unique Naming under Unfair Scheduler , 2001, Euro-Par.

[11]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[12]  Anish Arora,et al.  Closure and Convergence: A Foundation of Fault-Tolerant Computing , 1993, IEEE Trans. Software Eng..

[13]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[14]  Sandeep K. Shukla,et al.  Observations on self-stabilizing graph algorithms for anonymous networks , 1995 .

[15]  D. West Introduction to Graph Theory , 1995 .

[16]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Pradip K. Srimani,et al.  Maximal matching stabilizes in time O(m) , 2001, Inf. Process. Lett..

[18]  Edsger W. Dijkstra,et al.  Self stabilization in spite of distributed control , 1974 .

[19]  Colette Johnen,et al.  Self-stabilizing Neighborhood Unique Naming Under Unfair , 2001 .

[20]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[21]  Lisa Higham,et al.  SIMPLE RANDOMIZED LEADER ELECTION WITH EXTENSIONS , 1990 .

[22]  D. Rosenkrantz,et al.  Developing self - stabilizing coloring algorithms via systematic randomization , 1994 .

[23]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[24]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[25]  Edsger W. Dijkstra,et al.  Selected Writings on Computing: A personal Perspective , 1982, Texts and Monographs in Computer Science.

[26]  Marco Schneider,et al.  Self-stabilization , 1993, CSUR.