Multiscale modeling of polymer materials using field-theoretic methodologies: a survey about recent developments

Understanding the chemistry and physics of polymer systems challenges scientists from a wide spectrum of research areas, ranging from polymer science to molecular electronic structure theory. One of the characteristic features of polymer systems is that their physics involve a multitude of different length and time scales, which generally render the determination of their structure and physical properties on a detailed level computationally exhaustive. To overcome this difficulty, novel field-theoretic methodologies based on the mean field approximation have emerged recently and have proven to deliver useful results in the calculation of mesoscopic polymer models in the regime of high monomer concentrations. In this review we demonstrate that the field-theoretic approach is not only an useful formalism for treating highly concentrated polymer systems on the mesoscopic level of description, but that it is also a promising theoretical tool, to solve the multiscale problems arising in the calculation of physical properties of a wide variety of neutral and charged polymer materials. To this end, we show that the field-theoretic approach possesses the advantageous property to enable the treatment of all levels of description, spanning from the quantum to the continuum scale, within an unified theoretical framework. On the example of the coupling of the mesoscopic and continuum scale, we show that this specific feature constitutes a crucial advantage of field-theoretic approaches with regard to current state-of-the-art particle-based simulation methodologies for connecting different levels of description. Another major benefit relates to their favorable approximation characteristics, which permit to devise efficient approximation strategies for evaluating sophisticated polymer solution models in the low to moderate regime of monomer concentrations in a reliable way. To show this, we present novel low-cost approximation strategies beyond the mean field level of approximation using effective renormalization concepts, originating from the domain of quantum field theory, and demonstrate their usefulness in the calculation of structure and physical properties of several polymer models, described at various levels of description.

[1]  D. Smith,et al.  Molecular dynamics simulations in the grand canonical ensemble: Formulation of a bias potential for umbrella sampling , 1999 .

[2]  K. Binder,et al.  Spinodal decomposition in a binary polymer mixture: dynamic self-consistent-field theory and Monte Carlo simulations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  S. A. Baeurle Auxiliary Field Functional Integral Representation of the Many-Body Evolution Operator , 2002 .

[4]  K. Kremer,et al.  Structure of Salt-free Linear Polyelectrolytes in the Debye-Hückel Approximation , 1996 .

[5]  E. Thomas,et al.  Mechanical properties of the double gyroid phase in oriented thermoplastic elastomers , 2000 .

[6]  Sean Lee The convergence of complex Langevin simulations , 1994 .

[7]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[8]  S. A. Baeurle,et al.  Grand canonical investigations of prototypical polyelectrolyte models beyond the mean field level of approximation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J. H. Gibbs,et al.  Chain Stiffness and the Lattice Theory of Polymer Phases , 1958 .

[10]  S. A. Baeurle The stationary phase auxiliary field Monte Carlo method: a new strategy for reducing the sign problem of auxiliary field methodologies , 2003 .

[11]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[12]  W. Kaminsky,et al.  New copolymers of olefins and styrene by metallocene catalysis , 2002 .

[13]  M. St-Jacques,et al.  Microphase Separation in Low Molecular Weight Styrene-Isoprene Diblock Copolymers Studied by DSC and 13C NMR , 1980 .

[14]  J. Beecher,et al.  Morphology and mechanical behavior of block polymers , 1969 .

[15]  Sam S. Sun Design of a block copolymer solar cell , 2003 .

[16]  A. Terzis,et al.  Entanglement Network of the Polypropylene/Polyamide Interface. 3. Deformation to Fracture , 2002 .

[17]  Masao Doi OCTA (Open Computational Tool for Advanced material technology) , 2003 .

[18]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[19]  L. Landau,et al.  CHAPTER XII – FLUCTUATIONS , 1980 .

[20]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[21]  Marilisa Neri,et al.  Coarse-grained model of proteins incorporating atomistic detail of the active site. , 2005, Physical review letters.

[22]  P. Chaikin,et al.  Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory , 1984 .

[23]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[24]  R. Taylor The Finite Element Method, the Basis , 2000 .

[25]  G. Fredrickson,et al.  Field-theoretic polymer simulations , 2001 .

[26]  A. Yethiraj,et al.  Osmotic Pressure of Salt-Free Polyelectrolyte Solutions: A Monte Carlo Simulation Study , 2005 .

[27]  S. A. Baeurle,et al.  Challenging scaling laws of flexible polyelectrolyte solutions with effective renormalization concepts , 2007 .

[28]  Qi Liao,et al.  Molecular dynamics simulations of polyelectrolyte solutions: Nonuniform stretching of chains and scaling behavior , 2003 .

[29]  K. Moffat,et al.  Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Montgomery Pettitt,et al.  Molecular dynamics with a variable number of molecules , 1991 .

[31]  David S. Soane,et al.  Microstructural diagnosis of block copolymer nonlinear mechanical properties I. Uniaxial stress/strain , 1988 .

[32]  T. Odijk Possible Scaling Relations for Semidilute Polyelectrolyte Solutions , 1979 .

[33]  K. Wilson The renormalization group and critical phenomena , 1983 .

[34]  E. Clementi,et al.  Monte Carlo and Molecular Dynamics Simulations , 1989 .

[35]  The mechanism of complex Langevin simulations , 1992, hep-lat/9211050.

[36]  Alfred Uhlherr,et al.  Hierarchical simulation approach to structure and dynamics of polymers , 1998 .

[37]  P. Pincus,et al.  A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit , 1983 .

[38]  G. Fredrickson,et al.  Prediction of Elastic Properties of a Poly(styrene−butadiene−styrene) Copolymer Using a Mixed Finite Element Approach , 2004 .

[39]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[40]  H. Kawai,et al.  Deformation Mechanism of Elastomeric Block Copolymers Having Spherical Domains of Hard Segments under Uniaxial Tensile Stress , 1971 .

[41]  E. Helfand,et al.  Theory of the interface between immiscible polymers , 1971 .

[42]  R. Gaylord,et al.  Relaxation of crosslinked networks: theoretical models and apparent power law behaviour , 1988 .

[43]  K. Kremer,et al.  Multiscale simulation in polymer science , 2002 .

[44]  Glenn H. Fredrickson,et al.  Design of liquid-crystalline foods via field theoretic computer simulations , 2006 .

[45]  J. Klauder A Langevin approach to fermion and quantum spin correlation functions , 1983 .

[46]  Leonid V. Zhigilei,et al.  A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation , 1999 .

[47]  B. Montgomery Pettitt,et al.  Grand molecular dynamics: A method for open systems , 1991 .

[48]  M. Hara Polyelectrolytes : science and technology , 1993 .

[49]  Gerald S. Manning,et al.  Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties , 1969 .

[50]  M. Dineykhan Oscillator representation in quantum physics , 1995 .

[51]  S. A. Baeurle Computation within the auxiliary field approach , 2003 .

[52]  E. Helfand,et al.  Statistical thermodynamics of microdomain structures in block copolymer systems , 1977 .

[53]  Doros N. Theodorou,et al.  Hierarchical modeling of amorphous polymers , 2005, Comput. Phys. Commun..

[54]  G. Vesnaver,et al.  Entropies of dilution of strong polyelectrolyte solutions , 1986 .

[55]  Q. Wang,et al.  Self-Consistent Field Theory of Polyelectrolyte Systems , 2004 .

[56]  Mihaly Mezei,et al.  A cavity-biased (T, V, μ) Monte Carlo method for the computer simulation of fluids , 1980 .

[57]  Marcus Müller,et al.  Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations. , 2006, The Journal of chemical physics.

[58]  A. Terzis,et al.  Entanglement Network of the Polypropylene/Polyamide Interface. 2. Network Generation , 2000 .

[59]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[60]  H. Eyring,et al.  SIGNIFICANT LIQUID STRUCTURES, VI. THE VACANCY THEORY OF LIQUIDS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Fredrickson,et al.  Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids , 2002 .

[62]  C. Ligoure Hairy self-assemblies of surfactants , 2005 .

[63]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[64]  V. Bloomfield,et al.  Osmotic pressure of polyelectrolytes without added salt , 1990 .

[65]  A. Keller,et al.  The birefringence and mechanical properties of a ‘single crystal’ from a three-block copolymer , 1971 .

[66]  C. Chamis,et al.  Critique on Theories Predicting Thermoelastic Properties of Fibrous Composites , 1968 .

[67]  Mean-field fluid behavior of the gaussian core model , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  S. Clarke,et al.  Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer , 2002 .

[69]  F. Schmid,et al.  Self-consistent-field theories for complex fluids , 1998 .

[70]  Kazunori Kataoka,et al.  Block copolymer micelles for delivery of gene and related compounds. , 2002, Advanced drug delivery reviews.

[71]  J. Klauder,et al.  Complex Langevin equations for fermion models , 1985 .

[72]  Afsaneh Lavasanifar,et al.  Amphiphilic block copolymers for drug delivery. , 2003, Journal of pharmaceutical sciences.

[73]  S. A. Baeurle Grand canonical auxiliary field Monte Carlo: a new technique for simulating open systems at high density , 2004 .

[74]  G. Fredrickson The equilibrium theory of inhomogeneous polymers , 2005 .

[75]  F. Stillinger,et al.  Erratum: Study of melting and freezing in the Gaussian core model by molecular dynamics simulation , 1978 .

[76]  Anna C. Balazs,et al.  Nanoparticle Polymer Composites: Where Two Small Worlds Meet , 2006, Science.

[77]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[78]  B. Montgomery Pettitt,et al.  Dynamic simulations of water at constant chemical potential , 1992 .

[79]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[80]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[81]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[82]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[83]  James H. Haliburton,et al.  Organic solar cell optimizations , 2005 .

[84]  S. Krishnamoorthy,et al.  Nanoscale patterning with block copolymers , 2006 .

[85]  Kurt Kremer,et al.  Multiscale modeling of polymers on a surface: From ab initio density functional calculations of molecular adsorption to large-scale properties , 2005 .

[86]  Stephan Alexander Baeurle,et al.  Method of Gaussian equivalent representation: a new technique for reducing the sign problem of functional integral methods. , 2002, Physical review letters.

[87]  J. Jung,et al.  Thickness and composition dependence of the glass transition temperature in thin random copolymer films , 2004 .

[88]  M. Matsen The standard Gaussian model for block copolymer melts , 2002 .

[89]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[90]  Glenn H. Fredrickson,et al.  Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure , 2003 .

[91]  Constitutive equations for the nonlinear viscoelastic and viscoplastic behavior of thermoplastic elastomers , 2006 .

[92]  C. P. Henderson,et al.  Asymmetric composition profiles in block copolymer interphases: 2. Thermodynamic model predictions and implications , 1985 .

[93]  W. Kaminsky New Elastomers by metallocene catalysis , 2001 .

[94]  Langevin simulation of the chirally decomposed sine-Gordon model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  G. Efimov,et al.  On a new self-consistent-field theory for the canonical ensemble. , 2006, The Journal of chemical physics.

[96]  Statistical mechanics of charged polymers in electrolyte solutions: a lattice field theory approach. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[97]  Rhiju Das,et al.  Counterion distribution around DNA probed by solution X-ray scattering. , 2003, Physical review letters.

[98]  M. Dijkstra,et al.  Vapour-liquid coexistence for purely repulsive point-Yukawa fluids , 1998 .

[99]  D. Kaelble,et al.  On the viscoelastic behavior of a styrene‐butadiene‐styrene (S‐B‐S) block copolymer , 1970 .

[100]  K. Ngai Short-time and long-time relaxation dynamics of glass-forming substances : a coupling model perspective , 2000 .

[101]  J. D. Cloizeaux,et al.  The Lagrangian theory of polymer solutions at intermediate concentrations , 1975 .

[102]  Henri Orland,et al.  Quantum Many-Particle Systems , 1988 .

[103]  Statistical field theory for simple fluids: The collective variables representation , 2005, cond-mat/0503213.

[104]  K. Wilson Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior , 1971 .

[105]  Zvi Hashin,et al.  On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry , 1965 .

[106]  Christos N. Likos,et al.  EFFECTIVE INTERACTIONS IN SOFT CONDENSED MATTER PHYSICS , 2001 .

[107]  L. V. I︠A︡kushevich Nonlinear Physics of DNA , 1998 .

[108]  W. Kaminsky,et al.  New materials by polymerisation of olefins and styrene with metallocene catalysts , 2003 .

[109]  Kurt Kremer,et al.  Multiscale Problems in Polymer Science: Simulation Approaches , 2001 .

[110]  Complex Langevin for semisimple compact connected Lie groups and U(1) , 1998 .

[111]  A. Balazs,et al.  Predicting the Mesophases of Copolymer-Nanoparticle Composites , 2001, Science.

[112]  Jiri Janata,et al.  Conducting polymers in electronic chemical sensors , 2003, Nature materials.

[113]  G. Efimov,et al.  The partition functions of classical systems in the Gaussian equivalent representation of functional integrals , 1996 .

[114]  G. Grest,et al.  Phase diagram and dynamics of Yukawa systems , 1988 .

[115]  T. Honda,et al.  Microstructural study of mechanical properties of the ABA triblock copolymer using self-consistent field and molecular dynamics , 2002 .

[116]  J. Ferry Viscoelastic properties of polymers , 1961 .

[117]  Steven E. Keinath,et al.  ESR studies of polymer transitions. IV. Spin‐probe studies of styrene block copolymers , 1977 .

[118]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[119]  Ludmila V. Yakushevich,et al.  Nonlinear Physics of DNA: YAKUSHEVICH:DNA 2ED O-BK , 2005 .

[120]  D. Neuhauser,et al.  Shifted-contour auxiliary-field Monte Carlo: circumventing the sign difficulty for electronic-structure calculations , 1997 .

[121]  P. G. de Gennes,et al.  Exponents for the excluded volume problem as derived by the Wilson method , 1972 .

[122]  Kurt Kremer,et al.  BPA-PC on a Ni111 surface: the interplay between adsorption energy and conformational entropy for different chain-end modifications. , 2004, Journal of the American Chemical Society.

[123]  P. Coveney,et al.  Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[124]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[125]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[126]  Swapan K. Ghosh Density functional theory and multiscale materials modeling , 2003 .

[127]  Aranson,et al.  Continuum field description of crack propagation , 2000, Physical review letters.

[128]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[129]  D. S. Pearson,et al.  Viscoelasticity of randomly crosslinked polymer networks. Relaxation of dangling chains , 1985 .

[130]  J. H. Gibbs Nature of the Glass Transition in Polymers , 1956 .

[131]  Rosa María Velasco,et al.  Remarks on polyelectrolyte conformation , 1976 .

[132]  Structure factor of polymers interacting via a short range repulsive potential: application to hairy wormlike micelles. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  Klaus Schulten,et al.  Multiscale Method for Simulating Protein-DNA Complexes , 2004, Multiscale Model. Simul..

[134]  On a New Formulation of the Real-Time Propagator , 2003 .

[135]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[136]  G. Michler,et al.  Influence of interfacial structure on morphology and deformation behavior of SBS block copolymers , 2003 .

[137]  G. Orkoulas,et al.  Chemical potentials in ionic systems from Monte Carlo simulations with distance-biased test particle insertions , 1993 .

[138]  A. Terzis,et al.  Entanglement network of the polypropylene/polyamide interface. 1. Self-consistent field model , 2000 .

[139]  E. Verwey,et al.  Theory of the stability of lyophobic colloids. , 1955, The Journal of physical and colloid chemistry.

[140]  G. Fredrickson,et al.  Field-theoretic simulations of confined polymer solutions , 2003 .

[141]  E. Harth,et al.  New polymer synthesis by nitroxide mediated living radical polymerizations. , 2001, Chemical reviews.

[142]  L Delle Site,et al.  Polymers near metal surfaces: selective adsorption and global conformations. , 2002, Physical review letters.

[143]  M. Parrinello,et al.  A field-theoretical approach to simulation in the classical canonical and grand canonical ensemble , 2002 .

[144]  R. Arridge,et al.  The mechanical properties of a `single crystal' of SBS copolymer - a novel composite material , 1972 .

[145]  Kurt Kremer,et al.  The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study , 1995 .

[146]  T. Davison,et al.  A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53 , 2000 .

[147]  Marcus T. Cicerone,et al.  Anomalous Diffusion of Probe Molecules in Polystyrene: Evidence for Spatially Heterogeneous Segmental Dynamics , 1995 .

[148]  B. Montgomery Pettitt,et al.  Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble , 1994 .

[149]  Matej Praprotnik,et al.  Adaptive molecular resolution via a continuous change of the phase space dimensionality. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  A. A. Gusev,et al.  A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers , 2005 .

[151]  J. Sweeney,et al.  The chevron folding instability in thermoplastic elastomers and other layered materials , 1999 .

[152]  Andrei A. Gusev,et al.  A new multiscale modeling approach for the prediction of mechanical properties of polymer-based nanomaterials , 2006 .

[153]  G. Efimov,et al.  Functional Integrals in the Strong Coupling Regime and the Polaron Self-Energy , 1991 .

[154]  Salvatore Torquato,et al.  Determining elastic behavior of composites by the boundary element method , 1993 .

[155]  Andrei A. Gusev,et al.  On the glassy state of multiphase and pure polymer materials , 2006 .

[156]  Mechanical Properties of Styrene-Isoprene Block Copolymers , 1970 .

[157]  D. Long,et al.  Heterogeneous nature of the dynamics and glass transition in thin polymer films , 2004, The European physical journal. E, Soft matter.

[158]  A. A. Gurtovenko,et al.  Dynamics of inhomogeneous cross-linked polymers consisting of domains of different sizes , 2001 .

[159]  Peter S. Lomdahl,et al.  MOLECULAR DYNAMICS COMES OF AGE: 320 BILLION ATOM SIMULATION ON BlueGene/L , 2006 .

[160]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[161]  G. Kraus,et al.  Dynamic viscoelastic behavior of ABA block polymers and the nature of the domain boundary , 1976 .

[162]  P. K. Banerjee The Boundary Element Methods in Engineering , 1994 .

[163]  S. Oman Osmotic coefficients of aqueous polyelectrolyte solutions at low concentrations, 3. Dependence on macroion molecular weight†‡ , 1977 .

[164]  M. Oldstone,et al.  The antibody response of mice to murine leukemia virus in spontaneous infection: absence of classical immunologic tolerance (AKR mice-complement-fixing antibodies-lymphocytic choriomeningitis virus-immunofluorescence-glomerular deposits of antigen-antibody complexes). , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[165]  D. Stscherbina,et al.  Polyelectrolytes: Formation, Characterization and Application , 1994 .

[166]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[167]  Kremer,et al.  Structure of salt-free linear polyelectrolytes. , 1993, Physical review letters.

[168]  B. Pukánszky,et al.  Interfaces and interphases in multicomponent materials: past, present, future , 2005 .

[169]  Florian Müller-Plathe,et al.  Scale-Hopping in Computer Simulations of Polymers , 2002 .

[170]  F. Jensen Introduction to Computational Chemistry , 1998 .

[171]  B. Rosen Thermomechanical properties of fibrous composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[172]  Richard J. Spontak,et al.  Thermoplastic elastomers: fundamentals and applications , 2000 .

[173]  R. Langer,et al.  Tissue engineering: current state and perspectives , 2004, Applied Microbiology and Biotechnology.

[174]  A. Müller,et al.  Polyelectrolyte block copolymer micelles , 2004 .

[175]  T. L. Smith Time-Dependent Mechanical Properties of Elastomeric Block Polymers in Large Tensile Deformations , 1970 .

[176]  J. Marinsky,et al.  Further investigation of the osmotic properties of hydrogen and sodium polystyrenesulfonates , 1970 .

[177]  C. P. Henderson,et al.  Asymmetric composition profiles in block copolymer interphases: 1. Experimental evidence , 1985 .

[178]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[179]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Effect of Substrate Topography , 2003 .

[180]  Neutral and charged polymers at interfaces , 2002, cond-mat/0203364.

[181]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[182]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[183]  J. Kroener,et al.  Modeling Effective Interactions of Micellar Aggregates of Ionic Surfactants with the Gauss-Core Potential , 2004 .

[184]  Willie E. Rochefort,et al.  Rheology of Block Polyelectrolyte Solutions and Gels: A Review , 2006 .

[185]  J. Whitney,et al.  Elastic properties of fiber reinforced composite materials. , 1966 .

[186]  M. Cross,et al.  A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate , 1998 .

[187]  J. Hansen,et al.  Effective interactions between electric double layers. , 2000, Annual review of physical chemistry.

[188]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[189]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[190]  R. Mezzenga,et al.  Understanding foods as soft materials , 2005, Nature materials.

[191]  Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. , 2001, Physical review letters.

[192]  R. Baer,et al.  Shifted-contour auxiliary field Monte Carlo for ab initio electronic structure: Straddling the sign problem , 1998 .

[193]  Nicolas G. Hadjicostantinou COMBINING ATOMISTIC AND CONTINUUM SIMULATIONS OF CONTACT-LINE MOTION , 1999 .

[194]  L. Leibler,et al.  Block copolymers in tomorrow's plastics , 2005, Nature materials.

[195]  H. Frusawa A functional-integral formulation for polymer colloids: Pagonabarraga–Cates free energy revisited , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[196]  G. Michler,et al.  Correlation between Molecular Architecture, Morphology, and Deformation Behaviour of Styrene/Butadiene Block Copolymers , 2003 .

[197]  A. Blume,et al.  Motional heterogeneity and the nature of the interphase in block copolymers: a2H nuclear magnetic resonance study , 1990 .

[198]  F. Stillinger,et al.  Negative thermal expansion in the Gaussian core model , 1997 .

[199]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[200]  Roland Faller Automatic coarse graining of polymers , 2004 .

[201]  A. Keller,et al.  Deformation behavior of an S‐B‐S copolymer , 1977 .

[202]  M. Matsen,et al.  Monte Carlo phase diagram for diblock copolymer melts. , 2006, The Journal of chemical physics.

[203]  S. Edwards The statistical mechanics of polymers with excluded volume , 1965 .

[204]  P. Attard A grand canonical simulation technique for dense and confined fluids with application to a Lennard-Jones fluid , 1997 .

[205]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[206]  D. F. Leary,et al.  Statistical thermodynamics of A–B–A block copolymers: I , 1970 .

[207]  R. Arridge,et al.  The mechanical properties of an oriented lamella stack formed from an S-B-S block copolymer , 1991 .

[208]  V. Vlachy,et al.  A grand canonical Monte Carlo simulation study of polyelectrolyte solutions , 1986 .

[209]  M. Weck,et al.  Polymer-based tris(2-phenylpyridine)iridium complexes , 2006 .

[210]  Calculating field theories beyond the mean-field level , 2006 .

[211]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[212]  D. Ivanković,et al.  Screening and fundamental length scales in semidilute Na-DNA aqueous solutions. , 2006, Physical review letters.

[213]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[214]  P. L. Drzal,et al.  Origins of mechanical strength and elasticity in thermally reversible, acrylic triblock copolymer gels , 2003 .

[215]  A. Yang,et al.  Configurational Entropy Approach to the Kinetics of Glasses , 1997, Journal of research of the National Institute of Standards and Technology.

[216]  R. LeSar,et al.  Modeling and Simulation of Biomaterials , 2004 .

[217]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[218]  L. Sperling Introduction to physical polymer science , 1986 .

[219]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[220]  J. Marinsky,et al.  Osmotic properties of poly(styrenesulfonates). I. Osmotic coefficients , 1967 .

[221]  H. Löwen,et al.  Soft effective interactions between weakly charged polyelectrolyte chains. , 2004, The Journal of chemical physics.

[222]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[223]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[224]  F. Schmid,et al.  Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends , 2005, cond-mat/0501076.

[225]  J. Z. Zhu,et al.  The finite element method , 1977 .

[226]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[227]  On the correct convergence of complex Langevin simulations for polynomial actions , 1993, hep-lat/9312003.

[228]  The scaling behaviour of screened polyelectrolytes , 1997, cond-mat/9707036.

[229]  Alessandro Laio,et al.  A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations , 2002 .

[230]  Sidney Yip,et al.  Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator , 1998 .

[231]  P. Hegemann,et al.  Irreversible photoreduction of flavin in a mutated Phot-LOV1 domain. , 2003, Biochemistry.