A fast algorithm for fractional Fourier transforms

Abstract A fast algorithm for numerical calculation of arbitrary real order of fractional Fourier transforms is presented. Its computation complexity is comparable to that of fast convolution Fourier transform. Furthermore, it allows one to freely choose the sampling resolutions in both x- and u-space under the restriction of the Nyquist sampling theorem.

[1]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[2]  John T. Sheridan,et al.  Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. , 1994, Optics letters.

[3]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[4]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[5]  A. Lohmann A fake zoom lens for fractional Fourier experiments , 1995 .

[6]  Stéphane Roose,et al.  An efficient interpolation algorithm for Fourier and diffractive optics , 1993 .

[7]  Expression of the kernel of a fractional Fourier transform in elementary functions. , 1994, Optics letters.

[8]  H. Ozaktas,et al.  Fourier transforms of fractional order and their optical interpretation , 1993 .

[9]  Sumiyoshi Abe,et al.  Almost-Fourier and almost-Fresnel transformations , 1995 .

[10]  J. Sheridan,et al.  Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach , 1994 .

[11]  P. Pellat-Finet,et al.  Fractional order Fourier transform and Fourier optics , 1994 .

[12]  Osvaldo J. Trabocchi,et al.  Fractional Fourier transform applied to spatial filtering in the Fresnel domain , 1995 .

[13]  Zeev Zalevsky,et al.  New signal representation based on the fractional Fourier transform: definitions , 1995 .

[14]  S Liu,et al.  General optical implementations of fractional Fourier transforms. , 1995, Optics letters.

[15]  Liren Liu,et al.  One-operation image algebra and optoelectronic cellular two-layer logic array , 1994 .

[16]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  G. S. Agarwal,et al.  A simple realization of fractional Fourier transform and relation to harmonic oscillator Green's function , 1994 .

[18]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[19]  P. Pellat-Finet Fresnel diffraction and the fractional-order Fourier transform. , 1994, Optics letters.

[20]  O. Soares,et al.  Fractional Fourier transforms and imaging , 1994 .

[21]  David Mendlovic,et al.  Optical fractional correlation: experimental results , 1995 .