Nonvanishing for cubic L-functions

We prove that there is a positive proportion of L-functions associated to cubic characters over $\mathbb F_q[T]$ that do not vanish at the critical point $s=1/2$ . This is achieved by computing the first mollified moment using techniques previously developed by the authors in their work on the first moment of cubic L-functions, and by obtaining a sharp upper bound for the second mollified moment, building on work of Lester and Radziwiłł, which in turn develops further ideas from the work of Soundararajan, Harper and Radziwiłł. We work in the non-Kummer setting when $q\equiv 2 \,(\mathrm {mod}\,3)$ , but our results could be translated into the Kummer setting when $q\equiv 1\,(\mathrm {mod}\,3)$ as well as into the number-field case (assuming the generalised Riemann hypothesis). Our positive proportion of nonvanishing is explicit, but extremely small, due to the fact that the implied constant in the upper bound for the mollified second moment is very large.

[1]  Nicholas M. Katz,et al.  Random matrices, Frobenius eigenvalues, and monodromy , 1998 .

[2]  Alexandra Florea The fourth moment of quadratic Dirichlet L-functions over function fields , 2016, Geometric and Functional Analysis.

[3]  Peter J. Cho,et al.  Dirichlet characters and low-lying zeros of L-functions , 2020 .

[4]  Moments of the Riemann zeta function , 2006, math/0612106.

[5]  Moments of zeta and correlations of divisor-sums: IV , 2016 .

[6]  Alexandra Florea,et al.  Zeros of quadratic Dirichlet $L$-functions in the hyperelliptic ensemble , 2016, Transactions of the American Mathematical Society.

[7]  Patrick Meisner One Level Density for Cubic Galois Number Fields , 2017, Canadian Mathematical Bulletin.

[8]  Adam J. Harper Sharp conditional bounds for moments of the Riemann zeta function , 2013, 1305.4618.

[9]  D. Hayes The expression of a polynomial as a sum of three irreducibles , 1966 .

[10]  Signs of Fourier coefficients of half-integral weight modular forms , 2019, 1903.05811.

[11]  S. Baier,et al.  Mean values with cubic characters , 2008, 0804.2233.

[12]  Dorian Goldfeld,et al.  Multiple Dirichlet Series and Moments of Zeta and L-Functions , 2003, Compositio Mathematica.

[13]  The mean values of cubic L-functions over function fields , 2019, 1901.00817.

[14]  Chantal David,et al.  Conjectures for Moments Associated With Cubic Twists of Elliptic Curves , 2021, Exp. Math..

[15]  J. Ellenberg,et al.  Nonvanishing of hyperelliptic zeta functions over finite fields , 2019, Algebra & Number Theory.

[16]  J. P. Keating,et al.  Integral Moments of L‐Functions , 2002, math/0206018.

[17]  D. Goss NUMBER THEORY IN FUNCTION FIELDS (Graduate Texts in Mathematics 210) , 2003 .

[18]  K. Soundararajan,et al.  Moments and distribution of central L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-values of quadr , 2014, Inventiones mathematicae.

[19]  Jon P Keating,et al.  Fields Institute Communications , 2015 .

[20]  Chantal David,et al.  One-Level Density and Non-Vanishing for Cubic L-Functions Over the Eisenstein Field , 2021, 2102.02469.

[21]  C. Snyder,et al.  On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis , 1999 .

[22]  K. Soundararajan,et al.  The second moment of quadratic twists of modular L-functions , 2009, 0907.4747.

[23]  Michael Rosen,et al.  Number Theory in Function Fields , 2002 .

[24]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[25]  J. Keating,et al.  Moments of zeta and correlations of divisor-sums: IV , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  K. Soundararajan,et al.  Nonvanishing of quadratic Dirichlet L-functions at s=1/2 , 1999 .

[27]  Moments of zeta and correlations of divisor‐sums: V , 2015, Proceedings of the London Mathematical Society.

[28]  Moments of zeta and correlations of divisor-sums: III , 2015 .

[29]  W. Luo,et al.  On Hecke L-series associated with cubic characters , 2004, Compositio Mathematica.

[30]  The second and third moment of L(1/2,χ) in the hyperelliptic ensemble , 2016 .

[31]  Kannan Soundararajan,et al.  Demography of Cirsium vulgare in a grazing experiment. , 1994 .

[32]  Quanli Shen The fourth moment of quadratic Dirichlet L-functions , 2019, Mathematische Zeitschrift.

[33]  L. Bary-Soroker,et al.  ON THE DISTRIBUTION OF THE RATIONAL POINTS ON CYCLIC COVERS IN THE ABSENCE OF ROOTS OF UNITY , 2017, Mathematika.

[34]  Moments of quadratic twists of elliptic curve L-functions over function fields , 2019, 1902.00568.