Nonvanishing for cubic L-functions
暂无分享,去创建一个
[1] Nicholas M. Katz,et al. Random matrices, Frobenius eigenvalues, and monodromy , 1998 .
[2] Alexandra Florea. The fourth moment of quadratic Dirichlet L-functions over function fields , 2016, Geometric and Functional Analysis.
[3] Peter J. Cho,et al. Dirichlet characters and low-lying zeros of L-functions , 2020 .
[4] Moments of the Riemann zeta function , 2006, math/0612106.
[5] Moments of zeta and correlations of divisor-sums: IV , 2016 .
[6] Alexandra Florea,et al. Zeros of quadratic Dirichlet $L$-functions in the hyperelliptic ensemble , 2016, Transactions of the American Mathematical Society.
[7] Patrick Meisner. One Level Density for Cubic Galois Number Fields , 2017, Canadian Mathematical Bulletin.
[8] Adam J. Harper. Sharp conditional bounds for moments of the Riemann zeta function , 2013, 1305.4618.
[9] D. Hayes. The expression of a polynomial as a sum of three irreducibles , 1966 .
[10] Signs of Fourier coefficients of half-integral weight modular forms , 2019, 1903.05811.
[11] S. Baier,et al. Mean values with cubic characters , 2008, 0804.2233.
[12] Dorian Goldfeld,et al. Multiple Dirichlet Series and Moments of Zeta and L-Functions , 2003, Compositio Mathematica.
[13] The mean values of cubic L-functions over function fields , 2019, 1901.00817.
[14] Chantal David,et al. Conjectures for Moments Associated With Cubic Twists of Elliptic Curves , 2021, Exp. Math..
[15] J. Ellenberg,et al. Nonvanishing of hyperelliptic zeta functions over finite fields , 2019, Algebra & Number Theory.
[16] J. P. Keating,et al. Integral Moments of L‐Functions , 2002, math/0206018.
[17] D. Goss. NUMBER THEORY IN FUNCTION FIELDS (Graduate Texts in Mathematics 210) , 2003 .
[18] K. Soundararajan,et al. Moments and distribution of central L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-values of quadr , 2014, Inventiones mathematicae.
[19] Jon P Keating,et al. Fields Institute Communications , 2015 .
[20] Chantal David,et al. One-Level Density and Non-Vanishing for Cubic L-Functions Over the Eisenstein Field , 2021, 2102.02469.
[21] C. Snyder,et al. On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis , 1999 .
[22] K. Soundararajan,et al. The second moment of quadratic twists of modular L-functions , 2009, 0907.4747.
[23] Michael Rosen,et al. Number Theory in Function Fields , 2002 .
[24] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[25] J. Keating,et al. Moments of zeta and correlations of divisor-sums: IV , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[26] K. Soundararajan,et al. Nonvanishing of quadratic Dirichlet L-functions at s=1/2 , 1999 .
[27] Moments of zeta and correlations of divisor‐sums: V , 2015, Proceedings of the London Mathematical Society.
[28] Moments of zeta and correlations of divisor-sums: III , 2015 .
[29] W. Luo,et al. On Hecke L-series associated with cubic characters , 2004, Compositio Mathematica.
[30] The second and third moment of L(1/2,χ) in the hyperelliptic ensemble , 2016 .
[31] Kannan Soundararajan,et al. Demography of Cirsium vulgare in a grazing experiment. , 1994 .
[32] Quanli Shen. The fourth moment of quadratic Dirichlet L-functions , 2019, Mathematische Zeitschrift.
[33] L. Bary-Soroker,et al. ON THE DISTRIBUTION OF THE RATIONAL POINTS ON CYCLIC COVERS IN THE ABSENCE OF ROOTS OF UNITY , 2017, Mathematika.
[34] Moments of quadratic twists of elliptic curve L-functions over function fields , 2019, 1902.00568.